

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2024/2025 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE BACHELOR OF BUSINESS AND INFORMATION TECHNOLOGY **KMA 2103 – BASIC MATHEMATICS**

Date: 04TH December 2024 Time: 11:30AM - 1:30PM

INSTRUCTIONS TO CANDIDATES ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS **QUESTION ONE (30 MARKS)**

Solve without using tables or a calculator a)

$log_{10}75 + log_{10}9 + log_{10}5$

 $log_{10}5 + log_{10}45$

			(3 Marks)	
b)	A group of young men decided to raise <i>Ksh</i> . 480 , 000 to start a business. Before the actual payment			
		le, four members pulled out and each of those remaining had to pay an additional		
		0,000 . Determine the original number of members.	(4 Marks)	
c)		$0 \times 39 \times 38 \times 37$ in factorial notation.	(1 Mark)	
d)	Write down the coefficients of the terms indicated in the expansion of the following;			
	. ,	$(1+x)^{16}$, 3 rd term	(3 Marks)	
	. ,	$(2-x)^{20}$, 18 th term	(3 Marks)	
e)	Find how many different arrangements of 11 letters can be obtained from the letters		s of the word	
	MISSIS	SIPPI	(3 Marks)	
f)	A polynomial $f(x)$ has remainder 9 when divided by $(x - 3)$ and remainder -5 when divided by 2		vided by $2x +$	
		the remainder when divided by $(x - 3)(2x + 1)$	(3 Marks)	
g) In an arithmetic progression the 4^{th} term is 13 and the 7^{th} term is 22. Find;				
	i)	The first term and the common difference	(2 Marks)	
	ii)	The value of n if the n^{th} term is 100	(2 Marks)	
	iii)	The value of m if the sum of m terms of the series is 175.		
			(3 Marks)	
h)	The roots of the equation $5x^2 + 12x + 6 = 0$ are α and β . Find the equation of the integral coefficient		al coefficients	
	whose re	bots are $(\alpha - 1)$ and $(\beta - 1)$.	(3 Marks)	

QUESTION TWO (20 MARKS)

a) Simplify
$$\frac{\frac{1}{2}x^2(1+x)^{-\frac{1}{2}}-\frac{1}{2}x^{-\frac{1}{2}}(1+x)^{\frac{1}{2}}}{x}$$
 (4 Marks)

Use Complete the square method to solve for x in the function $x^2 + x + 1 = 0$ b)

(4 Marks)

c)	If $0 < x < \prod$ and $tan(X - A) = 3$, where $tan A = 2$, show that $x = \frac{3}{4} \prod$ without using tables	
		(4 Marks)

d) Find the first four terms in the expansion of $\sqrt{1-8x}$ in ascending power of x. Hence, substitute x = 0.01 and obtain the value of 23 correct to four significant figures (8 Marks)

QUESTION THREE (20 MARKS)

a)	Solve for x given $log_2 1 + log_4 \frac{1}{2} = log_9 x$	(4 Marks)

b) Show that the solution of the general quadratic equation $ax^2 + bx + c = 0$ is given by $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Hence solve the equation $x^2 + 15x + 56 = 0$. (7 Marks)

- c) Find the general solution of the equation $\cos 2x 3\cos x + 2 = 0$ (7 Marks)
- d) State the quotient and the remainder when $9x^3 5x + 5$ is divided by 2x 5

(2 Marks)

QUESTION FOUR (20 MARKS)

a)	Show that $tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$	(6 Marks)
b)	How many even numbers greater than 50000 can be formed using the digits 0,3,4,5,6,7	
	i) without repetitions	(6 Marks)
	ii) if repetitions are allowed	(4 Marks)
c)	Simplify without using tables or calculator;	

$$4\cos 30^{\circ}\sin 27.59^{\circ} - 4\sin 45^{\circ}\cos 62.41^{\circ} - 16\tan 45^{\circ}\sin 60^{\circ}$$
 (4 Marks)

QUESTION FIVE (20 MARKS)

a) Simplify
$$\frac{\sqrt{xy} \times x^{\frac{1}{3}} \times 2y^{\frac{1}{4}}}{(x^{10}y^9)^{\frac{1}{12}}}$$
 (3 Marks)

- b) The first term of an arithmetic progression is -12, and the last term is 40. If the sum of the progression is 196, find the number of terms and the common difference. (5 Marks)
- c) *Ksh.* 100,000 was invested on 1st January 1990. An additional of *Ksh.* 6,000 was added to the investment at the beginning of each subsequent year. The investment earns a compound interest of 8% per annum. Find the value of the investment on 31st December 2000. (7 Marks)
- d) Find the first four terms in the expansion of $(1 8x)^{\frac{1}{3}}$ in ascending powers of x. Hence, substitute $x = \frac{1}{100}$ and obtain the value of $\sqrt[3]{23}$ correct to 5 significant figures (5 Marks)