

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION FOR 2024/2025 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION (SPECIAL EXAMINATION) <u>KCS 207: THEORY OF ESTIMATION</u>

DATE: 9TH DECEMBER,2024 TIME: 11:30AM-1:30PM

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER OUESTION ONE (COMPULSORY) AND ANY OTHER TWO OUESTIONS</u> <u>QUESTION ONE: COMPULSORY (30 MARKS)</u>

a)	Distinguish between	
	i) Consistency and Efficiency.	(2 Marks)
	ii) Point and Interval estimator.	(2 Marks)
b)	Consider a random variable X with pdf	
	$f(x, \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0\\ 0, & \text{otherwise} \end{cases}$	
	i) Find the moment estimator of θ .	(4 Marks)
	ii) Show that the moment estimator obtained in i) is unbiased.	(2 Marks)
c)	Let $x_1, x_2 \dots x_n$ be a random sample of size n from be a random variable X with p.m	.f
	$f(x, p) = (p^{x} (1-p)^{1-x}, x = 0, 1)$	

$$f(x, p) = \begin{cases} p^{x} (1-p)^{1-x}, & x = 0, \\ 0, & \text{Otherwise} \end{cases}$$

Determine the sufficient statistic for p.

d) Let x₁, x₂ ... , x_n be a random sample of size n from be a random variable X with a normal density

$$f(x,\mu) = \begin{cases} \frac{1}{2\sqrt{\pi}} e^{-\frac{1}{4}(x-\mu)^2}, -\infty < x < \infty \\ 0, & \text{Otherwise} \end{cases}$$

Find the maximum likelihood estimator of μ .

e) Consider a random sample $y_1, y_2, y_3, ..., y_n$ of size n from Y with pdf

$$f(y, \alpha) = \begin{cases} \alpha e^{-\alpha y}, & y > 0 \\ 0, & \text{Otherwise} \end{cases}$$

Find the Cramer-Rao lower bound of $\psi(\alpha) = \frac{1}{\alpha}$.

f) To compare customer satisfaction levels of two competing cable television companies, 174 customers of Company 1 and 355 customers of Company 2 were randomly selected and were asked to rate their cable companies on a five-point scale, with 1 being least satisfied and 5 most satisfied. The survey results are summarized in the following table below.

(5 Marks)

(5 Marks)

(5 Marks)

Company 1	Company II
n ₁ = 174	$n_2 = 355$
$\bar{x}_1 = 3.51$	$\bar{x}_2 = 3.24$
$s_1 = 0.51$	$s_2 = 0.52$

Construct a point estimate and a 99% confidence interval for $\mu_1 - \mu_2$, the difference in average satisfaction levels of customers of the two companies as measured on this five-point scale.

(5 Marks)

QUESTION TWO (20 MARKS)

a) State the three Cramer-Rao regular conditions.

(3 Marks)

b) Show that under the regular conditions above, the Cramer-Rao inequality is given by

$$\operatorname{Var}(T) \leq \frac{(\psi'(\theta))^2}{I(\theta)}$$

Where $I(\theta) = E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial^2 \theta}\right)$, $\psi(\theta)$ is any function of θ and T is unbiased estimator of ψ (θ). (11 Marks)

c) Let $x_1, x_2 \dots x_n$ be a random sample of size n from be a random variable X with a normal density

$$f(x,\mu) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, -\infty < x < \infty \\ 0, & \text{Otherwise} \end{cases}$$

i) Find the Cramer-Rao lower bound of $\psi(\mu) = \mu$. (4 Marks) (2 Marks)

ii) Hence find the UMVUE of μ_{i} , if it exists.

QUESTION THREE (20 MARKS)

- a) Let $x_1, x_2, ..., x_m$ be a random sample of size m from $X \sim N(\mu_1, \sigma_1^2)$, where both parameters are unknown. Let $y_1, y_2, ..., y_n$ be another independent random sample from $Y \sim N(\mu_2, \sigma_2^2)$, also both parameters are unknown. Derive $100(1 - \alpha)\%$ confidence intervals for the difference in population means $\mu_1 - \mu_2$, where both X and Y are independent variables. (10 Marks)
- b) Two independent random samples were obtained from two independent random variables $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\mu_2, \sigma^2)$, that is $\sigma_1^2 = \sigma_2^2 = \sigma^2$ but unknown. The observations are as follows:

X: 20, 33, 57, 22, 44, 31, 33, 40

Y: 44, 55, 36, 65, 38, 45, 54, 50, 48, 62

Obtain 99% confidence intervals for the difference in the two population means. (10 Marks)

QUESTION FOUR (20 MARKS)

a) A random sample of size 10 had a mean $\overline{X} = 20$ and a standard deviation s = 18. Obtain 95% confidence intervals for true population variance σ^2 . (5 Marks)

b) A random variable X has a pdf given by the gamma density

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma \alpha} x^{\alpha - 1} e^{-\frac{x}{\beta}}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

- i) Find the moment estimators of α and β .
- ii) The failure time in years of a certain machine observed over time are;

If this failure time can be model using a gamma distribution above, determine the moment estimates of α and β . (5 Marks)

QUESTION FIVE (20 MARKS)

a) Let $\underline{X} = (x_1, x_2 \dots, x_n)$ be a random sample of size n from be a random variable X with p.m.f

$$f(x, p) = \begin{cases} p^{x}(1-p)^{1-x}, & x = 0, 1 \\ 0, & \text{Otherwise} \end{cases}$$

Find

- i) The joint probability distribution $P(\underline{X}, T)$.
- ii) The distribution of the statistic T.
- iii) The conditional probability distribution $P(\underline{X}/T)$, hence show that $T = \sum x_i$ is sufficient (3 Marks) for *p*.
- b) A response variable Y is related with two variables X_1 and X_2 in the form
 - $Y = a_0 + a_2 X_1 + e_i$. Data on seven sampled items are as shown in the table below

Y	12	22	17	15	21	23	25
X_1	5	8	7	6	8	9	11

- i) Use matrix notation to fit the given linear model. (7 Marks)
- ii) Estimate the variance of each parameter given that $e_i \sim N(0, 1)$. (2 Marks)

(10 Marks)

(4 Marks)

(4 Marks)