

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FOURTH YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS <u>KMA 403- TIME SERIES ANALYSIS</u>

Date: 14TH April, 2023 Time: 11.30am-1.30pm

INSTRUCTIONS TO CANDIDATES ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)	Desc	escribe any three components of time series analysis. (3 Ma					
b)	The	number of customers buying mobile phones at a local store per month	for January				
	throu	igh November for the year 2022 are:					
	41, 4	3, 39, 37, 42, 35, 30, 31, 32, 30 and 28. Using January as your first tin	ne interval,				
	deve	lop a linear trend model and forecast customers January 2007.	(5 Marks)				
c)	Shov	Show that a random walk process is stationary. Illustrate using an example a time series that					
	beha	ves like a random walk.	(5 Marks)				
d)	Determine whether Moving Average of order 2 given below is invertible.						
	$X_t = d$	$e_t - 0.5e_{t-1} - 0.4e_{t-2}$	(5 Marks)				
e)							
	i)	Describe the difference between the empirical autocorrelation func	tion, r(h), and the				
		theoretical autocorrelation function, $\rho(h)$.	(2 Marks)				
	ii)	How are the empirical autocorrelation function and theoretical auto	ocorrelation				
		function used to identify a time series model?	(2 Marks)				
f)	Auto	regressive Integrated Moving average models include a parameter, d,	that controls the				
	numl	number of times a time series is differenced before being modeled by an Auto regressive					
	movi	ng average process.					
	i)	Why is differencing a time series sometimes necessary?	(2 Marks)				
	ii)	How could you choose the amount of differencing required for a pa	articular time				
		series?	(2 Marks)				
g)	Expl	ain briefly each of the following terms as used in time series analysis.					
	i)	Stationarity in the weak sense	(2 Marks)				
	ii)	Deterministic time series	(2 Marks)				

OUESTION TWO (20 MARKS)

The annual production of a commodity is given as follows: a)

Year	1995	1996	1997	1998	1999	2000	2001
Production (tonnes)	155	162	171	182	158	180	178

Fit a straight line trend by the method of least squares. (6 Marks) Let e_t be a sequence of independent random variables with mean zero and variance σ^2 . Show b) that its spectral density function is given by $\frac{\sigma^2}{2\pi}$ and use it to find spectral density of the process $Y_t = e_t + e_{t-1} + e_{t-2}$. (7 Marks) Let the original time series be $X_t = e^{i\lambda t}$ with frequency $-\pi \le \lambda \le \pi$ and c)

 $Y_t = \frac{1}{2m+1} \sum_{j=-m}^{m} X_{t-j}$ be the transformed series after applying a (2m+1) point moving $\sin^{(2m+1)}$

average filter. Show that
$$Y_t = \frac{1}{2m+1} e^{i\lambda t} \frac{\sin(\frac{\pi t}{2}\lambda)}{\sin^2 t}$$
 (7 Marks)

QUESTION THREE (20 MARKS)

Consider Autoregressive process of order 2 given by $X_t = \frac{2}{9}X_{t-1} + \frac{1}{3}X_{t-2} + e_t$ where e_t is a) a purely random process.

- Show that X_t is second order stationary i) (5 Marks)
- Obtain its autocorrelation function. Find the serial correlation for h = 5 and h = 10. ii) (7 Marks)
- Consider a Moving Average process b) $X_t = \sum_{i=0}^{q} \beta_i \epsilon_{t-q}$ which is a linear function of $\{\varepsilon_t\}$. Find the spectral density function of a moving average process of order 1 (M.A (1))

QUESTION FOUR (20 MARKS)

- Let e_t be uncorrelated $(0,\sigma^2)$ random variables. Show that the first order autoregressive a) series, $X_t = \alpha X_{t-1} + e_t$, $|\alpha| < 1$, can be expressed as an infinite moving average of the e_t . (7 Marks)
- Find the auto covariance and autocorrelation functions of the infinite moving process derived b) in (a) above. (8 Marks)
- Find the trend of production by the method of a five-yearly period of moving average for the c) following data:

Year	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Production (000)	126	123	117	128	125	124	130	114	122	129	118	123

(5 Marks)

QUESTION FIVE (20 MARKS)

a)

i)

Calculate the seasonal variations for the following data by ratio to trend method

year	First quarter	Second quarter	Third quarter	Fourth quarter
1995	30	40	36	34
1996	34	52	50	44
1997	40	58	54	48
1998	54	76	68	62
1999	80	72	86	82
				(8 Marks)

Interpret the seasonal index for third quarter ii)

Consider the following Moving Average process of order 2 b)

$$Y_t = (1 + 2.4L + 0.8L 2)\varepsilon_t$$
, where $\varepsilon t \sim W N(0, 1)$.

- i) Show that the process is stationary
- Determine the auto-covariance function of the process ii)

(5 Marks) (5 Marks)

(2 Marks)

(8 Marks)