

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR FIRST YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE KMA 2103 LINEAR ALGEBRA I

Date: 15TH AUGUST, 2024 Time: 11:30 AM – 1:30 PM

INSTRUCTIONS TO CANDIDATES ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE: COMPULSORY (30 MARKS)

a) Determine the value(s) of h and k such that the system is consistent

$$-2x_1 - x_2 = h$$

 $4x_1 + 2x_2 = k$ (3 Marks)

b) Determine which of the following are subspaces of \mathbb{R}^3 ?

- All vectors of the form (a, 0, 0). (1 Mark) i.
- All vectors of the form (a, 1, 1). ii. (1 Mark)
- All vectors of the form (a, b, c,), where b = a + c. iii. (2 Marks)

 $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by c) Given the linear transformation

 $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$

- Find Kernel (T). (2 Marks) i.
- (2 Marks) ii. Is T one to one. (2 Marks)
- iii. Is T onto.

d) Determine the values of a and b for which the given vectors are linearly dependent

$$u_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ a \\ 5 \end{bmatrix}, u_3 = \begin{bmatrix} 0 \\ 4 \\ b \end{bmatrix}.$$
 (4 Marks)

e) Find the dimension of the column space of the matrix $\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 3 \\ 7 & 1 & 8 \end{bmatrix}$.

f) Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$ and $b = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Determine if *b* is in the plane spanned by the columns of matrix A.

(3 Marks)

(3 Marks)

g) Solve the following linear system of equations using row reduction method.

$$\begin{array}{l} x_1 + x_2 + 3x_3 = 3 \\ -x_1 + x_2 + x_3 = -1 \\ 2x_1 + 3x_2 + 8x_3 = 4 \end{array}$$
 (4 Marks)

h) Find the values of k for which the matrix $T = \begin{bmatrix} k-3 & 4 \\ k & k+2 \end{bmatrix}$ has no inverse.	(3 Marks)
$\underline{\text{QUESTION TWO:} (20 \text{ MARKS})}$	
a) Let $v_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$. i. Determine if $\{u_1, u_2, u_3\}$ is linearly independent. ii. If possible, find a linear independence relation among u_1, u_2, u_3 . b) Given the matrix	(4 Marks) (2 Marks)
$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}.$	
Evaluate;	
 i. the determinant of A ii. the inverse of A iii. hence or otherwise solve the system 	(2 Marks) (3 Marks)
$x_1 + 2x_2 - 2x_3 = 11$	
$-x_1 + 3x_2 = 8$	
$2x_2 + x_3 = 4$ c) Determine if <i>W</i> = {(<i>a</i> , 2, <i>a</i> + <i>b</i>): <i>a</i> , <i>b</i> ∈ ℝ} is a subspace of ℝ ³ ?	(2 Marks) (3 Marks)
d) Let $A = \begin{bmatrix} a & 2 \\ 3 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 4 \\ b & 2 \end{bmatrix}$, and $C = \begin{bmatrix} -1 & c \\ 3 & 2 \end{bmatrix}$. Given that $2A - 3B = 4C$, find	
of a, b and c .	(4 Marks)
QUESTION THREE (20 MARKS) a. Solve the following system of linear equations using Cramer's rule	
a. Solve the following system of linear equations using channel situe $x_1 + 2x_2 + 3x_3 = -5$	
$3x_1 + x_2 - 3x_2 = 4$	
$-3x_1 + 4x_2 + 7x_3 = -7$	(6 Marks)
b. Determine if h for which b is in the plane spanned by u_1 and u_2 where	
$u_1 = \begin{bmatrix} 1\\4\\-2 \end{bmatrix}$, $u_2 = \begin{bmatrix} -2\\-3\\7 \end{bmatrix}$, where $b = \begin{bmatrix} 4\\1\\h \end{bmatrix}$.	(7 Marks)
c. Compute the inverse of the following matrix using row reduction method	
	(7 Marka)
$\begin{vmatrix} 1 & 0 & 4 \\ -1 & 1 & -1 \\ -1 & 0 & -3 \end{vmatrix}$	(7 Marks)

QUESTION FOUR: (20 MARKS)

a. i. Define linear dependence of vectors.
ii. Determine whether the set of vectors $\{(1, 1, 1), (1, 2, 3), (1, 2, 1)\}$ is linearly(1 Mark)
dependent
(5 Marks)

b. Determine a basis and dimension of the solution space to

$$x_{1} + 2x_{2} - x_{3} + x_{4} = 0$$

- $x_{1} - 2x_{2} + 3x_{3} + 5x_{4} = 0$
- $x_{1} - 2x_{2} - x_{3} - 7x_{4} = 0$ (5 Marks)

c. Use Gaussian elimination method to solve the following system of linear equations

 $-x_2 - 2x_3 = -8$ $x_1 + 3x_3 = 2$ $7x_1 + x_2 + x_3 = 0$ (5 Marks)

d. Given the vectors $v_1 = [a, 1]$, $v_2 = [1, a]$, determine the values of a for which the vectors form a basis of \mathbb{R}^2 . (4 Marks)

<u>**QUESTION FIVE:**</u> (20 MARKS) a. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined as

	ſ1	0	1]	$[x_1]$
T(x) =	1	1	2	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
	2	1	3	$\begin{bmatrix} x_3 \end{bmatrix}$

Find:

i.	Basis for range of T.	(3 Marks)
ii.	Basis for kernel of <i>T</i> .	(3 Marks)
iii.	Rank (T)	(2 Marks)
iv.	nullity (T).	(2 Marks)
v.	is T is one-to-one	(3 Marks)
vi.	is T is onto	(3 Marks)
.1 .1		

b. Find the value of t for which the following matrix A is non-singular.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & t \\ 1 & 4 & t^2 \end{bmatrix}$$
(4 Marks)