

Kasarani Campus Off Thika Road P.O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

(4 marks)

KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2024/2025 ACADEMIC YEAR YEAR ONE, SEMESTER TWO EXAMINATION **BACHELOR OF EDUCATION (ARTS) KMA 2103: LINEAR ALGEBRA 1**

Date: 11th December 2024 Time: 8.30am-10.30am

	INSTRUCTIONS TO CANDIDATES	
	ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS	
	QUESTION ONE (30 MARKS)	
a)	Let $u = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$, $w = \begin{pmatrix} 4 \\ -2 \\ -6 \end{pmatrix}$ verify whether the associative property holds of these three v	ectors.
		(3 marks)
b)	Determine whether the vectors (1,2,4), (1,3,5) and (2,1,5) are linearly dependent or not.	(4 marks)
c)	Let $V = \mathbb{R}^3$. Show that W is a subspace of V where:	
	$\mathbf{W} = \{(a, b, 0): a, b \in \mathbb{R}\}, \text{ that is } \mathbf{W} \text{ is the } x, y plane consisting of the vectors whose third com-$	ponent is zero.
		(3 marks)
d)	Define a linear function $f: \mathbb{R}^3 \to \mathbb{R}^3$ by $f(x, y, z) = (x - z, y - x, z - y)$. Find	
	(i) the kernel of f .	(4 marks)
	(ii) the nullity of f .	(2 marks)
e)	Solve the system with three variables using Cramer's rule	(5 marks)
	2x + 4y + 6z = -12	
	2x - 3y - 4z = 15	
	3x + 4y + 5z = -8	
f)	Solve the linear system $x_1 + x_2 + 2x_3 = 9$	
	$2x_1 + 4x_2 - 3x_3 = 1$	
	$3x_1 + 6x_2 - 5x_3 = 0$	
	using Gauss Jordan elimination	(5 marks)

using Gauss Jordan elimination

g) Show that the set $\{(-3,2,4), (1,0,-2), (-1,-1,-1)\}$ spans \mathbb{R}^3 .

QUESTION TWO (20 MARKS)

- Define the rank of a matrix A a)
- (1 mark) Find the rank of $A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 10 & -6 & -5 \end{pmatrix}$ b) (5 marks)
- Solve the linear system by transforming the augmented matrix to a reduced row echelon form c)

$$x_{1} - x_{2} - 2x_{3} + x_{4} = 0$$

$$2x_{1} - x_{2} - 3x_{3} + 2x_{4} = -6$$

$$-x_{1} + 2x_{2} + x_{3} + 3x_{4} = 2$$

$$x_{1} + x_{2} - x_{3} + 2x_{4} = 1$$
(8 marks)

d) Given u = (3, -2, -5), v = (1, 4, -4), w = (0, 3, 1). Calculate $u. (v \times w)$ (3 marks)

Find the equation of the plane passing through the points $P_2(1,2,-1)$, $P_2(2,3,1)$ and $P_3(3,-1,2)$ e)

(3 marks)

(7 marks)

QUESTION THREE (20 MARKS)

- Show that the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (x y, x + y) is linear. (5 marks) a)
- Express $15x^2 + 9x 13$ as a linear combination of $2x^2 x$, $-3x^2 + 4$ and 5x 3. b)
- Solve the following system of linear equations by Gaussian Elimination c)

$$x_{1} + 3x_{2} + 2x_{5} = 0$$

$$2x_{1} + 6x_{2} - 5x_{3} - 2x_{4} + 4x_{5} - 3x_{6} = -1$$

$$5x_{3} + 10x_{4} + 15x_{6} = 5$$

$$2x_{1} - 6x_{2} + 8x_{4} + 4x_{5} + 18x_{6} = 6$$
(8 marks)

QUESTION FOUR (20 MARKS)

a) Define the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ by $T\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+b \\ b-c \\ a+d \end{pmatrix}$

i.	Find a basis for the null space of T and its dimension	(4 marks)
ii.	Describe the Range of <i>T</i>	(2 marks)
iii.	Find a basis for the range of T and its dimension	(3 marks)

b) Determine whether the vectors
$$V_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$, $v_4 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ are linearly dependent (4 marks)

c) Given that
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 5 \\ 1 & 4 & -5 \end{pmatrix}$$
, find A^{-1}
QUESTION FIVE (20 MARKS)
(7 marks)

a) Solve the linear system below by reducing its augmented matrix to a reduced echelon form

$$\begin{aligned}
 x - y + 2z - w &= -1 \\
 2x + y - 2z - 2w &= -2 \\
 -x + 2y - 4z + w &= 1
 \end{aligned}$$

$$3x \qquad -3w = -3 \qquad (6 \text{ marks})$$

- Determine the value(s) of λ such that the set {(λ , 1, -3), ((λ 1), 1, 0), (1,0,1)} is linearly independent. b) (7 marks)
- c) Determine whether the following subsets S of \mathbb{R}^3 is a subspace

(i)
$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} | x_1 + x_3 = -2 \right\}$$
 (3 marks)

(ii)
$$S = \left\{ \begin{bmatrix} s - 2t \\ s \\ t + s \end{bmatrix} | s, t \in \mathbb{R} \right\}$$
(4 marks)