

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

KMA 104 - CALCULUS I

Date: 13th April, 2023 Time: 10:30 am - 1:30pm

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS</u>

QUESTION ONE (30 MARKS)

a)

b)

c)

d)

e)

f)

Eval	uate the limits;	
i)	$\lim_{x \to 1} \frac{x-2}{x^2 + x - 6}$	(2 Marks)
ii)	$\lim_{x \to -3} \frac{x^3 + 27}{x + 3}$	(2 Marks)
iii)	$\lim_{n \to \infty} \frac{2x^4 - x^2 + 8x}{-5x^4 + 7}$	(2 Marks)
iv)	$\lim_{x \to 0} \frac{\sin 2x}{x}$	(2 Marks)
A pa	rticle moves along a straight line so that its displacement, S meters, from a f	ïxed
poin	t in it, after t seconds is given by $S = 6t^2 - t^3$.	
i)	Find the time after the start when the velocity is zero.	(2 Marks)
ii)	At what time after the start is the acceleration zero?	(2 Marks)
Disc	uss the continuity of the following functions. Which of these have removab	le
disco	ontinuities?	
	$g(x) = \frac{x^2 - 1}{x - 1}$	(2 Marks)
	$f(x) = \begin{cases} \frac{1}{2}x + 1, \ x \le 2\\ 3 - x, \ x > 2. \end{cases}$	(2 Marks)
Give	n $f(x) = 3x - 2$ and $h(x) = \frac{1}{3}x + \frac{2}{3}$, find each of the following:	
i)	(fog)(x)	(2 Marks)
ii)	(gof)(x)	(2 Marks)
Give	n that $f(x) = \frac{x+4}{2x-5}$, find $f^{-1}(x)$, the inverse of $f(x)$.	(2 Marks)
Diffe	erentiate the following functions:	
i)	$y = \frac{(x+1)^2}{(x-2)^3}$	(3 Marks)

ii)
$$y = \sec(3x^2 + 2x + 5).$$
 (2 Marks)

iii)
$$y = \sin \sqrt[3]{x} + \sqrt[3]{sinx}$$
 (3 Marks)

QUESTION TWO (20 MARKS)

a)

]	Find $\frac{d}{dt}$	$\frac{y}{x}$ for the following;	
i	i)	$y^2 = x^2 + Sinxy$	(3 Marks)
i	ii)	$y^2 \cos\left(\frac{1}{y}\right) = 2x + 2y$	(3 Marks)
i	iii)	$y = \sin(\tan 2x)$	(3 Marks)

iv)
$$y = \sin(\tan 2x)$$
 (5 Marks)
iv) $y = (2 + (x^2 + 1)^4)^3$ (3 Marks)

v)
$$\cot y = x - y$$
 (3 Marks)

vi)
$$y = e^{3x^2}$$
 (2 Marks)

b) Find the slope of the tangent to the curve $x^2 + \frac{x}{y} + y^2 = 7$ at the point (1,2). (3 Marks)

QUESTION THREE (20 MARKS)

- a) Find $\frac{dy}{dx}$ by Implicit differentiation and evaluate the derivative at the given point;
 - i) $y^2 = \frac{x^2 49}{x^2 + 49}$ at (7, 0) (3 Marks)

ii)
$$x^{2/3} + y^{2/3} = 5$$
, at (8,1). (3 Marks)

iii)
$$\tan(x + y) = x$$
, at (0,0). (4 Marks)

b) Find the first two derivatives of the following;

i)
$$(x+y)^2 = 2xy + 5$$
 (3 Marks)

ii)
$$\sqrt{x} + \sqrt{y} = 1$$
 at the point $(\frac{1}{4}, \frac{1}{4})$ (4 Marks)

iii)
$$p = 3q^4 - 4q^2 + 3$$
 (3 Marks)

QUESTION FOUR (20 MARKS)

a)	Find the equation of the line tangent to the given curve $x = 2t - 1$, $y = 4t^2 - 2t$	
	at the point $t=1$.	(3 Marks)
b)	Differentiate and simplify;	

i)
$$y = \frac{4\ln x^2}{x}$$
 (3 Marks)

ii)
$$y = sinx^2$$
. (ln($x^2 + 1$)) (4 Marks)

c) Find
$$\frac{dy}{dx}$$
 for the functions;
i) $y = e^{xe^x}$ (3 Marks)

ii)
$$v = e^{\tan(x^2 + 1)}$$
 (3 Marks)

d) A farmer has 60m of fencing which he can put against an already existing fence to form a rectangular pen to enclose animals. What is the maximum area he can enclose? (4 Marks)

QUESTION FIVE (20 MARKS)

a)	Find the extrema of $f(x) = 3x^4 - 4x^3$ on the interval $[-1,2]$.	(6 Marks)
----	---	-----------

- b) Determine the slope of the graph of $3(x^2 + y^2)^2 = 100 xy$ at the point (3,1). (4 Marks)
- c) At the time t=0, a diver jumps from a platform diving board that is 32 feet above the water. Because the initial velocity of the diver is 16 feet per second, the position of the diver is $S(t) = -16t^2 + 16t + 32$ where S is measured in feet and t in seconds.

i)	When does the diver hit the water?	(5 Marks)
ii)	What is the diver's velocity at impact?	(5 Marks)