

### Kasarani Campus Off Thika Road Tel. 2042692 / 3

P. O. Box 49274,

00100

NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

# KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR

### THIRD YEAR, SECOND SEMESTER EXAMINATION

## FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

### **KMA 310: REAL ANALYSIS**

Date: 14<sup>th</sup> August, 2023 Time: 8.30am – 10.30am

### **INSTRUCTIONS TO CANDIDATES**

### ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

a) Show that  $\sqrt{p}$  is irrational where p is a prime number. (4 Marks)

b) Prove that the function  $f(x) = x^2 + 2$  is continuous at every point x = a,  $a \in R$ .

(4 Marks)

- c) Show that the series  $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$  is convergent. (4 Marks)
- d) i) Show that the infinite set  $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ .....is bounded. (3 Marks)
  - ii) Determine the supremum and the infimum of the set in question d i) above.

(2 Marks)

- e) Give the definition of a metric  $\rho$  on a set X. If  $\rho: X \times X \to R^{+\delta \cup \{0\}\delta}$  is given by  $\rho(x,y)=|x-y|, \forall x,y \in X$ , show that  $(X,\rho)$  is a metric space. (5 Marks)
- f) Prove using principle of mathematical induction that for all  $n \in N$ ,

 $1+3+5+...+(2n-1)=n^2$ . (4 Marks)

g) Show that the set of rational numbers is countable.

(4 Marks)

### **QUESTION TWO (20 MARKS)**

a) Let  $(X, \partial)$  be a metric space and  $A \subset X$ . Show that A is closed if and only if  $A^c$  is open in X.

(7 Marks)

b) Prove that the intersection of finite number of open sets is open.

(7 Marks)

c) Show that  $\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + n}$  is a divergent series.

(6 Marks)

### **QUESTION THREE (20 MARKS)**

a) Given that x and y are positive numbers, show that x < y if and only if  $x^2 < y^2$ . (5 Marks)

b) Show  $|x+y| \le |x| + |y|$  for all real numbers x and y. (5 Marks) c) Prove that  $Q^c$  is uncountable. (5 Marks) d) For any two positive numbers a and b, prove that  $\sqrt{ab} \le \frac{1}{2}(a+b)$ . (5 Marks)

### **QUESTION FOUR (20 MARKS)**

a) Let  $X \subset R$ . Show that if X has a unique maxima. (7 Marks)

b) Prove that the empty set is open. (6 Marks)

c) Show that every convergent sequence has a unique limit. (7 Marks)

### **QUESTION FIVE (20 MARKS)**

a) Prove that the  $f(x)=x^2+2x+6$  is differentiable at x=3 (4 Marks)

b) Consider the series  $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ , determine whether the series converges or diverges using the integral test. (6 Marks)

c) Show that every convergent sequence is a Cauchy sequence (6 Marks)

d) Investigate the continuity of the function  $f(x) = x^2$  and state the form of continuity.

(4 Marks)