

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BUSINESS AND INFORMATION TECHNOLOGY <u>KMA 2102 - CALCULUS FOR BUSINESS INFORMATION</u>

Date: 13th April, 2023 Time: 8:30 am - 10:30am

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)	Evaluate the limits;	
	i) $\lim_{x \to 1} \frac{x-2}{x^2+x-6}$	(2 Marks)
	ii) $\lim_{x \to -3} \frac{x^3 + 27}{x + 3}$	(2 Marks)
	iii) $\lim_{n \to \infty} \frac{2x^4 - x^2 + 8x}{-5x^4 + 7}$	(2 Marks)
	iv) $\lim_{x \to 0} \frac{\sin 2x}{x}$	(2 Marks)
b)	A particle moves along a straight line so that its displacement, S meters, from a fixed	
	point in it, after t seconds is given by $S = 6t^2 - t^3$.	
	i) Find the time after the start when the velocity is zero	. (2 Marks)
	ii) At what time after the start is the acceleration zero?	(2 Marks)
c)	Discuss the continuity of the following functions. Which of these have removable	
	discontinuities?	
	i) $g(x) = \frac{x^2 - 1}{x - 1}$	(2 Marks)
	ii) $f(x) = \begin{cases} \frac{1}{2}x+1, \ x \le 2\\ 3-x, \ x > 2. \end{cases}$	(2 Marks)
d)	Given $f(x) = 3x - 2$ and $h(x) = \frac{1}{3}x + \frac{2}{3}$, find each of the following:	
	i) $(fog)(x)$	(2 Marks)
	ii) $(gof)(x)$	(2 Marks)
e)	Given that $f(x) = \frac{x+4}{2x-5}$, find $f^{-1}(x)$, the inverse of $f(x)$.	(2 Marks)
f)	Differentiate the following functions:	
	i) $y = \frac{(x+1)^2}{(x-2)^3}$	(3 Marks)

ii)
$$y = \sec(3x^2 + 2x + 5).$$
 (2 Marks)

iii)
$$y = \sin \sqrt[3]{x} + \sqrt[3]{\sin x}$$
 (3 Marks)

QUESTION TWO (20 MARKS)

Find $\frac{dy}{dx}$ for the following; a) i) $y^2 = x^2 + Sinxv$ (3 Marks) $y^2 \cos\left(\frac{1}{y}\right) = 2x + 2y$ ii) (3 Marks) iii) $y = \sin(\tan 2x)$ (3 Marks) iv) $y = (2 + (x^2 + 1)^4)^3$ (3 Marks) v) $\cot y = x - y$ (3 Marks) vi) $v = e^{3x^2}$ (2 Marks) Find the slope of the tangent to the curve $x^2 + \frac{x}{y} + y^2 = 7$ at the point (1,2). (3 Marks) b)

QUESTION THREE (20 MARKS)

- a) Find $\frac{dy}{dx}$ by Implicit differentiation and evaluate the derivative at the given point;
 - i) $y^2 = \frac{x^2 49}{x^2 + 49}$ at (7, 0) (3 Marks)
 - ii) $x^{2/3} + y^{2/3} = 5$, at (8,1). (3 Marks)
 - iii) $\tan(x + y) = x$, at (0,0). (4 Marks)
- b) Find the first two derivatives of the following;
 - i) $(x+y)^2 = 2xy + 5$ (3 Marks)

ii)
$$\sqrt{x} + \sqrt{y} = 1$$
 at the point $(\frac{1}{4}, \frac{1}{4})$ (4 Marks)

iii)
$$p = 3q^4 - 4q^2 + 3$$
 (3 Marks)

QUESTION FOUR (20 MARKS)

- a) Find the equation of the line tangent to the given curve x = 2t 1, $y = 4t^2 2t$ at the point t=1. (3 Marks)
- b) Differentiate and simplify;

i)
$$y = \frac{4 \ln x^2}{x}$$
 (3 Marks)

ii)
$$y = sinx^2$$
. (ln($x^2 + 1$)) (4 Marks)

c) Find
$$\frac{dy}{dx}$$
 for the functions;

i)
$$y = e^{xe^x}$$
 (3 Marks)

ii)
$$y = e^{\tan(x^2 + 1)}$$
(3 Marks)

d) A farmer has 60m of fencing which he can put against an already existing fence to form a rectangular pen to enclose animals. What is the maximum area he can enclose? (4 Marks)

QUESTION FIVE (20 MARKS)

- a) Find the extrema of $f(x) = 3x^4 4x^3$ on the interval [-1,2]. (6 Marks)
- b) Determine the slope of the graph of $3(x^2 + y^2)^2 = 100 xy$ at the point (3,1). (4 Marks)
- c) At the time t=0, a diver jumps from a platform diving board that is 32 feet above the water. Because the initial velocity of the diver is 16 feet per second, the position of the diver is $S(t) = -16t^2 + 16t + 32$ where S is measured in feet and t in seconds.
 - i) When does the diver hit the water? (5 Marks)
 - ii) What is the diver's velocity at impact? (5 Marks)