

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR FOURTH YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

KMA 2416: MULTIVARIATE METHODS II

DATE: 4TH DECEMBER 2024 Time: 11:30AM – 1:30PM

 $n_1 = 5$)

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY)</u> AND ANY OTHER TWO QUESTIONS

QUESTION ONE: COMPULSORY (30 MARKS)

a) A random sample of size 10 was obtained from a bivariate normal population with mean vector μ and variance-covariance matrix Σ_0 (known) where

$\Sigma_0 = \begin{bmatrix} \\ \end{bmatrix}$	4 4.2	4.2 9],	$\underline{\mu}_0 = (6$	5) [′] .	Given	that	$\overline{\underline{X}} = (5.8, 5.2)',$	carry	out	the	test	at
---	----------	------------	--------------------------	-------------------	-------	------	---	-------	-----	-----	------	----

 $\alpha = 0.01$ level of significance for

Group

 $H_{0}: \underline{\mu} = \underline{\mu}_{0}$ $H_{1}: \underline{\mu} \neq \underline{\mu}_{0}$ (5 Marks)

b) Consider the following multivariate data from two groups. The sample data consists of measurements on two variables (e.g., height and weight) for two different groups:

1 (Sample Size $n_1 = 5$)			$n_1 = 5)$		Group 2 (Sa	mple	Size
	(1.5	65	1			(1.4	60
	1.6	70				1.5	65
$\mathbf{X} =$	1.7	75	and	ł	$\mathbf{Y} =$	1.6	70
	1.8	80				1.7	75
	(1.9 85)				1.8	80	

You are required to conduct a quadratic form analysis to evaluate whether there is a significant difference between the mean vectors of the two groups by performing the following tasks:

- i. Compute the sample mean vectors $\overline{\underline{X}}$ and $\overline{\underline{Y}}$. (4 Marks)
- ii. Calculate the sample covariance matrices S_x and S_y (6 Marks)
- iii. Compute the pooled covariance matrix S_x . (3 Marks)
- iv. Construct the quadratic form $\mathbf{Q} = (\overline{\underline{\mathbf{X}}} \overline{\underline{\underline{\mathbf{Y}}}})^T \mathbf{S}_P^{-1} (\overline{\underline{\mathbf{X}}} \overline{\underline{\underline{\mathbf{Y}}}})$ and interpret the result

(3 Marks)

c) Consider the following dataset consisting of two variables *X* and *Y* collected from a sample of 5 observations to be used in Principal Component Analysis (PCA):

Χ	2	3	5	8	9
Y	3	4	7	10	12

Using the data provided above:

i.	Construct the sample covariance matrix of the dataset.	(4 Marks)
----	--	-----------

ii. Calculate the eigenvalues of the covariance matrix. (5 Marks)

QUESTION TWO: (20 MARKS)

a) Let X_1, X_2, \dots, X_n be i.i.d random variables with mean μ and variance σ^2 . Given that $O = (X - X_1)^2 + (X - X_2)^2 + (X - X_2)^2$ Find:

$$Q = (X_1 - X_2) + (X_2 - X_3) + \dots + (X_{n-1} - X_n)$$
 Find:
i. Expectation of Q, $E(Q)$ (6 Marks)

- ii. Hence or otherwise, find the unbiased estimator of σ^2 (2 Marks)
- b) A researcher collected data on two types of fruits based on their weight (grams) to be used in discriminant analysis. The data for Type A and Type B is given below:

Type A	150	160	155	162	158
Type B	130	135	128	140	138

Using the provided data, perform the following tasks:

- i. Obtain the sample mean and variance for each type of fruit. (4 Marks)
- ii. Construct the linear discriminant function for this problem. (5 Marks)
- iii. Classify a new fruit with a weight of 145 grams using the discriminant function.

(3 Marks)

QUESTION THREE: (20 MARKS)

a) In an experiment involving two correlated variables, the following statistics were obtained

$$\overline{\underline{X}} = \left(\frac{\overline{X}_1}{\overline{X}_2}\right) = \left(\begin{array}{c}10.0\\10.0\end{array}\right) \text{ and } S = \begin{bmatrix}0.7986 & 0.6793\\0.6793 & 0.7343\end{bmatrix}$$

Determine:

- i. The principal components for this problem (6 Marks)
- ii. The percentage variance explained by each component. (3 Marks)
- iii. Correlations of the principal components with the original variables (5 Marks)
- b) Let \underline{X} be a p-variate random vector with mean vector $\underline{\mu}$ and variance-covariance matrix

 $\Sigma = ((\sigma_{ij})i, j = 1, 2, ..., p)$ Let A be a symmetric matrix such that the quadratic form on <u>X</u>

is given by
$$Q = \underline{X}' A \underline{X}$$
. Show that $E(\underline{X}' A \underline{X}) = Trace(A\Sigma) + \underline{\mu}' A \underline{\mu}$ (6 Marks)

QUESTION FOUR: (20 MARKS)

a) Let
$$\underline{X}_1, \underline{X}_2, \underline{X}_3, \dots, \underline{X}_n$$
 be *i.i.d* $N_p(\underline{\mu}, \Sigma)$, where Σ is unknown.
Given $\underline{\overline{X}} = (160.53, 23.81)'$ and $S = \begin{bmatrix} 32.95 & 1.78 \\ 1.78 & 1.77 \end{bmatrix}$, $n = 15$. Carry out a $\alpha = 0.05$ level test
for $H_0: \underline{\mu} = \underline{\mu}_0 = (164.51 \ 25.49)'$ against $H_1: \underline{\mu} \neq \underline{\mu}_0$ (7 Marks)

- b) Explain how the following tests are used to decide on the number of principal components to be retained
 - i. Caeser's Test
 - ii. Catell's Scree Test
 - iii. Bartlett's Test

c) Two bivariate normal populations are mixed together. It was later decided that the two populations be separated. The parameters of the two distributions are

$$P_1: \underline{X} \sim N_2(\underline{\mu}_1, \Sigma) \text{ and } \underline{\mu}_1 = (6.2, 3.8)$$
$$P_2: \underline{X} \sim N_2(\underline{\mu}_2, \Sigma) \text{ and } \underline{\mu}_2 = (5.8, 3.5)' \text{ and } \Sigma = \begin{bmatrix} 25 & 16\\ 16 & 16 \end{bmatrix}$$

Using this information,

- i. Construct the optimal linear discriminant rule (5 Marks)
- ii. Hence or otherwise, classify a new observation $\underline{X} = (6.0, 3.4)'$ (2 Marks)

QUESTION FIVE: (20 MARKS)

- a) Given $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, and $f(\underline{X}) = C \exp\left\{-\frac{1}{2}Q\right\}$ where Q has the usual meaning. Show that E(Q) = p (4 Marks)
- b) The data below refers to nutritional contents of three diets. Variables measured are

$$\underline{\mathbf{Y}} = \begin{bmatrix} \mathbf{Y}_{1} (Ascorbic), \mathbf{Y}_{2} (Riboflavin) \end{bmatrix}' \\ \underline{\mathbf{Diet A} (n_{1} = 2)}_{\begin{bmatrix} 0.25\\ 1.50 \end{bmatrix}}, \begin{bmatrix} 0.59\\ 1.78 \end{bmatrix}} \quad \underline{\begin{bmatrix} 1.85\\ 2.90 \end{bmatrix}, \begin{bmatrix} 3.50\\ 4.00 \end{bmatrix}, \begin{bmatrix} 1.80\\ 3.15 \end{bmatrix}} \quad \underline{\begin{bmatrix} 0.74\\ 0.95 \end{bmatrix}, \begin{bmatrix} 1.25\\ 1.80 \end{bmatrix}, \begin{bmatrix} 0.95\\ 1.55 \end{bmatrix}}$$

- i. Write down appropriate statistical model for analyzing this data (3 Marks)
 ii. Find the between groups (B) and within groups (W), SS and CP Matrices (6 Marks)
 iii. Form a MANOVA Table (4 Marks)
- iv. Test for equality of diet content at 0.1 level of significance (3 Marks)