

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212

Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2022/2023 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 29th July, 2022 Time: 11.30am –1.30pm

KMA 209 - ALGEBRA 1

INSTRUCTIONS TO CANDIDATES

ANSWER **QUESTION ONE** (**COMPULSORY**) AND **ANY OTHER TWO** QUESTIONS

QUESTION ONE (30 MARKS)

- a) Distinguish between the following terms as used in algebra;
 - i) Symmetric group and alternating group

(2 Marks)

ii) Homomorphsim and isomorphism

(2 Marks)

iii) Integral domain and zero divisors

(2 Marks)

b) Define a subgroup, list all the subgroups of Z_6 and construct their lattice diagram.

(4 Marks)

c) Prove that for all $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$.

(4 Marks)

d) Define * on Q^+ by $a*b = \frac{2ab}{3}$, show that $(Q^+,*)$ is a group.

(4 Marks)

e) Let n be a fixed positive integer in Z. Define the relation \equiv_n on Z by $x \equiv_n y$ iff $\frac{n}{x-y}$ for all $x, y \in Z$. Show that \equiv_n is an equivalence relation in Z.

(4 Marks)

f) Show that every division ring is a ring without zero divisor.

(5 Marks)

g) Define transposition and list the even permutations in S_4

(4 Marks)

h) Prove that an identity element if it exist of a mathematical system (S,*) is unique.

(3 Marks)

QUESTION TWO (20 MARKS)

- a) Let G denote the set of all ordered pairs of real numbers with non-zero first component of the binary operation * is defined by (a,b)*(c,d)=(ac,bc+cd). Show that (G,*) is a non-abelian group. (6 Marks)
- b) Let A be a non-empty set and let S_A be the collection of all permutations of A. Show that S_A is a group under permutation multiplication.

(7 Marks)

c) Prove that every cyclic subgroup is abelian hence show how 1 generates Z_{12}

(7 Marks)

QUESTION THREE (20 MARKS)

a) Let *n* be a fixed positive integer in *Z*. Define the relation \equiv_n on *Z* as follows for all $x, y \in Z$. $x \equiv_n y$ iff $\frac{n}{xy}$. Show that \equiv_n is an equivalence relation in *Z*.

(6 Marks)

- b) Let $f:G\to G_1$ be a group homomorphism. Show that the kernel of f is a normal subgroup of G .
- c) Show that every subgroup of an abelian group is normal.

(6 marks)

(8 Marks)

QUESTION FOUR (20 MARKS)

a) Define normal subgroup and prove that every subgroup of index 2 is normal.

(6 Marks)

b) Let H be a normal subgroup of G. Denote the set of all left cosets $\{aH \mid a \in G\}$ by $\frac{G}{H}$ and define * in $\frac{G}{H}$ for all $aH,bH \in \frac{G}{H}$ by (aH)*(bH)=abH. Show that $(\frac{G}{H},*)$ is a group

(8 Marks)

c) Let R_1 and R_2 be subrings of R. Show that $R_1 I R_2$ is a subring of R.

(6 Marks)

QUESTION FIVE (20 MARKS)

a) State the Langrange's Theorem

(3 Marks)

b) List all the elements of a symmetric group of order 3 and construct a multiplication table for S_3

(12 Marks)

c) Prove that any two cosets; right and left cosets of H in G are disjoint.

(5 Marks)