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INSTRUCTIONS TO CANDIDATES 

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS 

QUESTION ONE (30 MARKS)  

a) Consider the following sample data matrix with three variables 
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i) Obtain the sample covariance matrix               (4 Marks) 

ii) Use the obtained covariance matrix to find variance of 321 32 XXX        (3 Marks) 

b) Explain the following concepts and their significance as used in multivariate analysis 

i) Central Limit Theorem                  (2 Marks) 

ii) Law of Large Numbers                  (2 Marks)  

c) Consider the random vector   321 ,, XXXX with a pdf given by; 
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i) Find the value of the constant k        (3 Marks) 

ii) Obtain the marginal distributions of ,, 21 XX  and 3X and check for independence of

,, 21 XX  and 3X         (5 Marks) 

d) The variates  321 ,, XXXX 


and  321 ,, YYYY 


are distributed independently according to 

the trivariate normal populations with respective parameters. 
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Determine the distribution of 
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 YXZ          (3 Marks) 
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 YXQ          (3 Marks) 



e) Suppose  ,~ 3 NY where 
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By appropriate partitioning, examine the independence between  31 ,YY and 2Y  

                        (5 Marks) 

QUESTION TWO (20 MARKS) 

a) Consider a bivariate normal distribution with 4,2,0 221121    and 75.0 .  

i) Obtain the covariance matrix and write the bivariate normal density as a quadratic function 

of 1X and 2X            (5 Marks) 

ii) Hence, obtain the conditional distribution of 2X given 1X                   (4 Marks)  

b) Let the random variables 1X and 2X have a joint probability generating function  

        111exp, 213221121  SSSSSSP   

Find; 

i) Mean and variance of 1X            (4 Marks) 

ii) The covariance of 1X and 2X          (4 Marks) 

iii) The correlation coefficient between 1X and 2X        (3 Marks) 

 

QUESTION THREE (20 MARKS) 

a) Define a characteristic function of a random vector.           (3 Marks) 

b) Obtain the characteristic function of a p-dimensional random vector ),(~ pNX   

                 (9 Marks) 

c) Define 0,'  aXaY , where a is a vector of constants. Use the characteristic function 

technique to show that )','(~ aaaNY p                  (4 Marks) 

d) Let ,),(~ 3 NX where )3,1,2(  and
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QUESTION FOUR (20 MARKS) 

a) Let X be a p-variate random vector with mean vector  and variance-covariance matrix 

  .......,,2,1, pjiij   Let A be a symmetric matrix such that the quadratic form on X is 

given by .XAXQ


 Show that    AATraceXAXE
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   (6 Marks) 

b) Define a quadratic form   .
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ii XXM  Obtain the unbiased estimator of 
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expectation of the quadratic form.              (10 Marks) 

c) Given ,),(~ pNX and  
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  pQE               (4 Marks) 

 

 



 

QUESTION FIVE (20 MARKS) 

a) Suppose X and Y are random variables with joint density function 
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Find the correlation matrix of   .,


 YXZ Hence or otherwise, comment of the relationship 

between X and Y.                          (8 Marks) 

   

b) Given that ),,( 321
 XXXX  with mean vector )2,1,1(  and
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Find the conditional distribution of 2X given   )3,0(, 31
XX           (8 Marks) 

 

c) Let  2

111 ,~ NX and  2

222 ,~ NX and given that 1X and 
2X are independent random 

variables. Find the distribution of 21 XXY  using the moment generating function (mgf) 

technique.                (4 Marks) 

 


