

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212

# KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2022/2023 ACADEMIC YEAR

SECOND YEAR, SECOND SEMESTER, END OF SEMESTER EXAMINATIONS BACHELOR OF EDUCATION (ARTS)

#### **KMA 2301:REAL ANALYSIS**

Date: 13<sup>th</sup> December 2022 Time: 2.30pm-4.30pm

#### **INSTRUCTION TO CANDIDATES:**

## ANSWER QUESTION ONE(COMPULSORY AND ANY OTHER TWO QUESTIONS QUESTION ONE(30 MARKS)

a). (i) Show that if xz = yz for  $z \neq 0$ , then x = y.

(3marks)

(ii) Given a relation  $R = \{(1,2), (1,3), (2,4), (3,8), (2,-1)\}.$ 

Find the domain and the range of relation R.

(4marks)

b). Let (S, <) be an ordered set and E be a subset of S.

Define the terms:

(i) least upper bound of E

(2marks)

(ii) greatest lower bound of E

(2marks)

c). Let  $\{E_{\infty} : \infty \in A\}$  be a family of subsets of a set X. Prove that

d). Consider  $\mathbb{R}$  and the function  $\rho$  on  $\mathbb{R}$  x  $\mathbb{R}$  defined by

$$\rho(x,y)=|x-y|, \forall x,y \in \mathbb{R}.$$

Show that  $\rho$  is a metric and  $(\mathbb{R}, \rho)$  is a metric space.

(7marks)

e). Show that  $\int_{1}^{\infty} \frac{\sin x}{x^4} dx$  is absolutely convergent.

#### **QUESTION TWO (20 MARKS)**

a). Use comparison test to test the convergence of the series  $\sum_{n=1}^{\infty} (\sqrt[3]{n^3 + 1} - n)$ . (8 marks)

b). Prove that no finite set *A* is equivalent to a proper subset of itself. (4marks)

c). Show that the interval (0,1) is equivalent to  $\mathbb{R}$ . (8 marks)

#### **QUESTION THREE (20 MARKS)**

a). State Raabe's test for convergence of a series.

Hence use it to test for the convergence of the series

$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \frac{x^4}{4.5} + \dots$$
 (10marks)

- b). If E is a subset of (S,<) which is bounded above and if LubE exists, show that the LubE is unique. (6marks)
- c). Consider the function  $g: \aleph \to \mathbb{R}$  defined by  $g(n) = \begin{cases} 1, & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is old} \end{cases}$  (4marks)

#### **QUESTION FOUR (20 MARKS)**

- a). Use Abel's test to test for convergence of  $\int_a^\infty (1 e^{-x}) \frac{\cos x}{x^2} dx$ , a > 0. (9marks)
- b). Given a metric space  $(\mathbb{R}, d)$  and A = (a, b) (5marks) Find  $\bar{A}$ , the closure of A.
- c). Let  $(X, \rho)$  be a metric space and  $E \subseteq X$ . Prove that  $\overline{E} = EUE^d$ , where  $E^d$  is the derived set of E.

### **QUESTION FIVE(20 MARKS)**

a). Let  $(X, \rho)$  be a metric space and E be a subset of X.

Prove that E is open if and only if  $E^c$  is closed.

(6marks)

(8marks)

- b). Let *E* be the interval (a, b], where  $a, b \in \mathbb{R}$ . Find the interior of  $E, E^o$ . (6marks)
- c). State the completeness axiom for the real line,  $\mathbb{R}$ .

Hence use it to establish that every non void set E bounded below has a greatest lower bound in  $\mathbb{R}$ .

 $E \propto : \propto \in \gamma$