

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2023/2024 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

KMA 107 - INTRODUCTION TO NUMERICAL ANALYSIS

Date: 20th April 2023 Time: 4.00 – 6.00pm

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)	i)	Con	vert the hexadecimal number (2B7.3D2) ₁₆ to Denary number system.							stem.	
	ii) Convert (11101111010000100100001) ₂ to hexadecimal number system.								em.	(3Marks) (3Marks)	
b) c)											(4Marks)
		X	0.1	0.3	0.5	0.7	0.9	1.1	1.3		
		у	0.003	0.067	0.148	0.248	0.37	0.518	0.697		

- d) Evaluate $\int_0^1 \frac{dx}{1+x}$ using Trapezoidal rule and $\Box = 0.2$.
- e) Suppose that $x = \frac{5}{9}$ and $y = \frac{3}{7}$. Use five digit arithmetic to approximate p + q and determine the absolute and relative errors using chopping method. (3 Marks)

f) Use bisection method to find the smallest positive root to the equation $x^3 - x - 11 = 0$

g) Find the Newton-Gregory forward difference interpolating polynomial for the following data:

Х	0.1	0.2	0.3	0.4	0.5
f(x)	1.40	1.56	1.76	2.00	2.28

(4 Marks)

(5Marks)

(4 Marks)

(4 Marks)

QUESTION TWO (20MARKS)

a)	Conve (i)	ert the following Octal numbers into their denary equivalent; (1547.321) ₈	(2 Marks)
	(ii)	$(2963.4X12)_{12}$	(2 Marks)
	(iii)	$(4B5.2A8)_{16}$	(2 Marks)
b)	Conve (i)	ert the following numbers to the stated number system 0.52346_{10} to duodecimal	(3 Marks)
	(ii)	4592.6531 ₁₀ to octal form	(2 Marks)
	(iii)	2734.426 ₁₀ to hexadecimal form	(3 Marks)
	(<i>iv</i>)	171.976 ₁₀ to binary form	(3 Marks)
c)	Conve	ert $(01111011100100100010010)_2$ to octal number system.	(3 Marks)

QUESTION THREE (20 MARKS)

a) Perform five iterations of the bisection method to obtain the smallest positive root of the equation

$$f(x) = x^3 - 5x + 1 = 0$$
 (8Marks)

b) Find the approximate value of

$$I = \int_0^{\pi} \sin^2 x dx$$

Using (i) Trapezoidal rule

(ii) Simpson's $\frac{1}{3}$ – *rule* by dividing the range of integration into six equal parts.

(12Marks)

QUESTION FOUR (20MARKS)

- a) Prove the following relations
 - (i) $(1 + \Delta)(1 \nabla) \equiv 1$ (4 Marks)
 - (ii) $(\Delta \nabla) \equiv \Delta \nabla$. (4 Marks)

2

- b) Evaluate the following:
 - (i) $\nabla^2(ab^{cx})$ (3 Marks)

(ii)
$$\Delta^2(2^x)$$
 (3 Marks)

c) Suppose that $x = \frac{2}{7}$ and $y = \frac{1}{3}$. Use five digit chopping for calculating x + y and $x \ge y$.

(6 Marks)

QUESTION FIVE (20 MARKS)

a) Consider the following table of values;

	x	1	1.1	1.2	1.3	1.4	1.5
ľ	f(x)	2	2.1	2.3	2.7	3.5	4.5

Use Newton's forward difference formula to estimate the value of f(1.35). (10 Marks)

b) Obtain the polynomial for the following data:

Х	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	3.375	7	13.625	24	38.875	59

(10 Marks)