

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR FOURTH YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

KMA 2410 MULTIVARIATE STATISTICAL METHODS I

Date: 13TH AUGUST, 2024 Time: 11:30 AM – 1:30 PM

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY)</u> AND ANY OTHER TWO QUESTIONS

QUESTION ONE: COMPULSORY (30 MARKS)

- a) Suppose the data below is a random sample from a bivariate normal distribution
 - $\underline{X}^{T} = \begin{pmatrix} 3 & 4 & 5 & 4 \\ 6 & 4 & 7 & 7 \end{pmatrix}^{T}$

Obtain:

- i. The maximum likelihood estimate of the mean vector
- **ii.** The maximum likelihood estimate of the covariance matrix
- **b**) Suppose $Y \sim N_3(\underline{\mu}, \sum)$ where $\mu = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$ and $\sum = \begin{bmatrix} 4 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

Examine the independence between (Y_1, Y_3) and Y_2

c) Let \underline{X} be a 3-variate random vector such that $\Sigma = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 2 \end{bmatrix}$

Obtain the correlation matrix of the random vector $\underline{Y} = (Y_1, Y_2, Y_3)'$ where

- $Y_1 = x_1 + x_2,$ $Y_2 = x_1 + x_3,$ $Y_3 = x_2 + x_3$ (6 Marks)d) Explain the following concepts and their significance as used in multivariate analysisi. Central Limit Theorem(2 Marks)
 - ii. Law of Large Numbers
- e) Define $Y = a' \underline{X}$, $a \neq 0$, where *a* is a vector of constants. Use the characteristic function technique to show that $Y \sim N_p(a' \underline{\mu}, a' \Sigma a)$ (4 Marks)
- **f**) The variates $\underline{X}' = (X_1, X_2, X_3)$ and $\underline{Y}' = (Y_1, Y_2, Y_3)$ are distributed independently according to the trivariate normal populations with respective parameters

(3 Marks)

- (4 Marks)
- (5 Marks)

(2 Marks)

$$\mu_{1} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, \quad \sum_{1} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad \mu_{2} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, \quad \sum_{2} = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 4 & 2 \\ 0 & 2 & 4 \end{bmatrix},$$

Determine the distribution of $Z = 3\underline{X} - \underline{Y}$

(4 marks)

QUESTION TWO: (20 MARKS)

- a) Consider a p-dimensional random vector \underline{X} and let A be a matrix of constants compatible with \underline{X} and \underline{b} be a vector of constants of the same size as $A\underline{X}$
 - i. Given that $X = (X_1, X_2, X_3)'$ with mean vector $\underline{\mu'} = (1, -1, 3)'$ and $\Sigma = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 3 \\ 0 & 3 & 10 \end{bmatrix}$ Let

 $Y_1 = X_1 - X_2 + X_3$, $Y_2 = X_1 + X_2 - 3X_3$ and $Y_3 = 2X_1 - X_2 - X_3$. Find the dispersion matrix of $Y = (Y_1, Y_2, Y_3)'$ (5 Marks)

ii. Comment on the independence of Y_1 and Y_3 using correlation matrix (5 Marks)

- **b**) Consider the following sample data matrix with three variables
 - $X = \begin{pmatrix} 9 & 12 & 3 \\ 2 & 8 & 4 \\ 6 & 6 & 0 \\ 5 & 4 & 2 \\ 8 & 10 & 1 \end{pmatrix}$

Obtain:

i. Sample covariance matrix

(6 Marks)

ii. Use the obtained sample covariance matrix in (i) above to find variance of $Z = \begin{pmatrix} X_1 - X_2 + X_3 \\ 2X_1 + X_2 - X_3 \end{pmatrix}$ (4 Marks)

QUESTION THREE: (20 MARKS)

a) Consider the random vector $\underline{X} = (X_1, X_2, X_3)'$ with a pdf given by

$$f(\underline{x}) = \begin{cases} kx_1x_2x_3, & 0 < x_1, x_2 < 1, & 0 < x_3 < 3\\ 0, & otherwise \end{cases}$$

i. Find the value of *k*

- (2 Marks) (6 Marks)
- ii. Obtain the dispersion matrix for this distribution

b) Given that $X = (X_1, X_2, X_3)'$ with mean vector $\underline{\mu'} = (1, -1, 2)'$ and $\Sigma = \begin{bmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{bmatrix}$.

Partition \underline{X} as $X_1 = X_1$ and $\underline{X}_2 = (X_2, X_3)'$. Obtain the regression coefficients for the regression line of X_1 on X_2 and X_3 (7 Marks)

c) Let $\underline{X} \sim N_p(\mu, \Sigma)$, where Σ is symmetric positive definite. Given that the moment generating function of \underline{X} is given by $M_{\underline{X}}(\underline{t}) = \exp\left\{\underline{t'}\underline{\mu} + \frac{1}{2}\underline{t'}\Sigma\underline{t}\right\}$, show that $E(\underline{X}) = \underline{\mu}$ and $Var(X) = \Sigma$ (5 Marks)

QUESTION FOUR: (20 MARKS)

- a) The table below shows laboratory results of three characteristics of soil chemical contents (measured in milliequivalents per 100 g) from some 10 different locations. The variables are
 - Y_1 = available soil calcium,
 - $Y_2 =$ exchangeable soil calcium,
 - $Y_3 = turnip$ green calcium.

Location	1	2	3	4	5	6	7	8	9	10
Y ₁	35	35	40	10	6	20	35	35	35	30
Y ₂	3.5	4.9	30.0	2.8	2.7	2.8	4.6	10.9	8.0	1.6
Y ₃	2.80	2.70	4.38	3.21	2.73	2.81	2.88	2.90	3.28	3.20

Assuming normal distribution, use the provided data to obtain the following:

i. Mean vector	(3 Marks)
ii. Dispersion matrix	(5 Marks)
iii. Conditional distribution of Y_3 given $(Y_1, Y_2) = (7.0, 3.0)'$	(5 Marks)
	• •

b) Let the joint density function of two random variables X and Y be given by

 $y \leq 1$

$$(x, y) = \begin{cases} k(x+4y), & 0 \le x \le 2, 0 \le \\ 0, & elsewhere \end{cases}$$

f

b)

- i. Find the value of the constant k (2 Marks) (5 Marks)
- **ii.** Obtain the marginal densities of X and Y

QUESTION FIVE: (20 MARKS)

a) Let $\underline{X}_1, \underline{X}_2, \dots, \underline{X}_n$ be *n* independent observation vectors from a multivariate normal population with mean vector $\underline{\mu}$ and covariance matrix Σ . Define the sample mean vector

$$\overline{\underline{X}} = \frac{1}{n} \sum_{r=1}^{n} \underline{X}_{r} \text{ and sample covariance matrix as } S = ((S_{ij})), S_{ij} = \frac{1}{n} \sum_{r=1}^{n} (X_{ri} - \overline{X}_{i}) (X_{rj} - \overline{X}_{j})$$

i. Derive the distribution of $\overline{\underline{X}}$ (Hint: show that $\overline{\underline{X}} \sim N(\underline{\mu}, \Sigma)$) (5 Marks)
ii. Show that the sample covariance matrix *S* is biased for Σ (4 Marks)
iii. Hence or otherwise, obtain the unbiased estimator for Σ (2 Marks)
Given that $X = (X_1, X_2, X_3)'$ with mean vector $\underline{\mu'} = (1, -1, 2)'$ and $\Sigma = \begin{bmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{bmatrix}$.
Partition \underline{X} as X_2 and $\underline{X}_2 = (X_1, X_3)'$. Hence or otherwise, find

i.
$$E(X_2 / \underline{X}_2)$$
 (4 Marks)

 ii. $Var(X_2 / \underline{X}_2)$
 (5 Marks)