

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION FOR 2024/2025 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION (SPECIAL EXAMINATION) KMA 205: BASIC NUMBER THEORY

DATE: 9TH DECEMBER,2024 TIME: 2:30PM-4:30PM

INSTRUCTIONS TO CANDIDATES

ANSWER OUESTION ONE (COMPULSORY) AND ANY OTHER TWO OUESTIONS QUESTION ONE: COMPULSORY (30 MARKS)

a)	Explain with examples the difference between the following terms as used in number	
	theory	
	(i) Prime numbers and composite numbers	(4 Marks)
	(ii) Rational numbers and integers.	(4 Marks)
b)	If $\frac{d}{a}$ and $\frac{d}{b}$, Show that $\frac{d}{ra \pm sb}$	(4 Marks)
c)	Prove that every composite integer n has a prime divisor p such that 1	\sqrt{n} , hence if
	an integer <i>n</i> has no prime divisor between 1 and \sqrt{n} , then <i>n</i> must be prime.	(4 Marks)
d)	For positive integers 485 and 625, show that $(485, 625) = 5$	(4 Marks)
e)	Prove that if $\frac{n}{ab}$ where <i>n</i> and <i>a</i> are coprime, then $\frac{n}{b}$	(5 Marks)
f)	State the Wilson's theorem	(2 Marks)
g)	Solve $x^2 + y^2 \cong 0 \pmod{3}$	(3 Marks)
QUESTION TWO (20 MARKS)		
a)	Find all the right-angled triangles with integer sides and a perimeter of 240	(12 Marks)
b)	Show that $(723,387) = 3$ and find values of x and y such that $723x + 387y =$	3
		(8 Marks)
	<u>STION THREE (20 MARKS)</u>	<i></i>
	If $a \cong b \pmod{m}$ and $c \cong d \pmod{m}$, show that $a \pm c \cong b \pm d \pmod{m}$	(4 Marks)
	Solve $x \cong 4 \pmod{21}$ and $x \cong 13 \pmod{30}$ simultaneously	(8 Marks)
	Find the solutions of the linear Diophantine equation $109x + 87y = 50001$	(8 Marks)
QUESTION FOUR (20 MARKS)		
a)	Define pseudo-prime	(2 Marks)
b)	State the Fermat's theorem hence find the order of $2 \pmod{167}$	(12 Marks)
c)	Prove that if $(a,b)=1$, the equation $ax + by = c$ can be solved in integers. If	x_0, y_0 is one
	of the solution, then the general solution is $x = x_0 + bt$, $y = y_0 - at$ where t is	s an arbitrary
	integer.	(6 Marks)
QUESTION FIVE (20 MARKS)		
-	State Helly's theorem	(4 Marks)
b)		
	Diophantine equation obtained.	(12 Marks)

c) Show that $\sqrt{689}$ is a prime number (4 Marks)