

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS) (SPECIAL EXAMINATION) KMA 209: ALGEBRA

DATE: 6TH DECEMBER 2024 TIME: 2:30PM – 4:30PM

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS</u>

QUESTION ONE: COMPULSORY (30 MARKS)

1) Define the following terms	
(i) Group	
(ii) Binary operation	
(iii) Permutation	(6 Marks)
b) Prove that for all $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$	(4 Marks)
c) Define * on Q^+ by $a * b = \frac{ab}{2}$. Show that $(Q^+, *)$ is a group.	(4 Marks)
d) Define an abelian group and prove that every cyclic subgroup is abelian	n. (4 Marks)
e) Show that every division ring is a ring without zero divisor.	(5 Marks)
f) Define transposition and list the even and odd permutations in S_3	(4 Marks)
g) Prove that every field is an integral domain.	(3 Marks)
QUESTION TWO: (20 MARKS)	
1) Let G denote the set of all ordered pairs of real numbers with non-zero	o first component of
the binary operation $*$ is defined by $(a,b)*(c,d)=(ac,bc+d)$. Show the	hat $(G,*)$ is a non-
abelian group.	(8 Marks)
2) Let A be a non-empty set and let S_A be the collection of all permutation	ns of A. Show that S_A
is a group under permutation multiplication.	(7 Marks)
3) An identity element (if it exist) of mathematical system $(S,*)$ is unique	e. Prove. (5 Marks)
QUESTION THREE: (20 MARKS)	
a) Let <i>m</i> be a fixed positive integer in <i>Z</i> . Define the relation \equiv_n on <i>Z</i> as	s follows for all
$x, y \in Z$. $x \equiv_n y$ iff $\frac{n}{x-y}$ i.e. $x - y = nk$. Show that \equiv_n is an equivalent	ence relation in Z .
	(6 Marks)
b) Let $f: G \rightarrow G$ be a group homomorphism. Show that kernel of f is a	a normal subgroup of

b) Let $f: G \to G_1$ be a group homomorphism. Show that kernel of f is a normal subgroup of G. (8 Marks)

- a) Define normal subgroup and prove that every subgroup of index 2 is normal. (6 Marks)
- b) Let *H* be a normal subgroup of *G*. Denote the set of all left cosets $\{aH \mid a \in G\}$ by $\frac{G}{H}$ and

define * in
$$\frac{G}{H}$$
 for all $aH, bH \in \frac{G}{H}$ by $(aH)*(bH)=abH$. Show $\left(\frac{G}{H},*\right)$ is a group
(8 Marks)

- c) Let R_1 and R_2 be subrings of R. Show that $R_1 \cap R_2$ is a subring of R. (6 Marks) QUESTION FIVE: (20 MARKS)
- a) State the Lagrange's Theorem
- b) List all the elements of a symmetric group of order 3 and construct a multiplication table for S_3 (12 Marks)
- c) Prove that any two, right and left cosets of H in G are disjoint. (5 Marks)

(3 Marks)