

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

KMA 2203: PROBABILITY AND STATISTICS II

DATE: 13TH DECEMBER, 2024 TIME: 8:30AM-10:30AM

<u>INSTRUCTIONS TO CANDIDATES</u> ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE: COMPULSORY (30 MARKS)

a) If the *j*. *p*. *d*. *f* of x and y is given by

$$f(x, y) = \begin{cases} x + y & 0 < x < 1 \\ 0 & 0/w \end{cases}$$
Find using the joint cumulative density function $p \begin{cases} 0 < x < \frac{1}{2} \\ 0 < y < 1 \end{cases}$
(6 Marks)
b) Suppose that x has discrete distribution function as the following
 $x -3 -2 -1 & 0 & 1 & 2 & 3 \\ f(x) & \frac{4}{21} & \frac{1}{6} & \frac{1}{14} & \frac{1}{7} & \frac{1}{14} & \frac{1}{6} & \frac{4}{21} \end{cases}$
Find the pdf of a new random variable $u = 3x^2 + 1$
(6 Marks)
c) Determine the value of *k* so that the function below can serve as *j*. *p*. *d*. *f f*(*x*, *y*) =

$$\begin{cases} k(6 - x - y) & 0 < x < 2 \\ 0 & 0/w \\ \text{Hence compute the following } p(x < 1, y < 3) \end{cases}$$
(3 Marks)

d) Let x be a random variable from Poisson distribution with pdf given as

$$f(x) = \begin{cases} \frac{e^{-5}5^x}{x!} & x = 0,1,2,3\\ 0 & o/w \end{cases}$$

Find the characteristic function of x

(6 Marks)

e) Given the jpdf of x and y as

$$f(x,y) = \begin{cases} \frac{1}{30}(x+y) & x = 0,1,2\\ \frac{1}{30}(x+y) & y = 0,1,2,3\\ 0 & elsewhere \end{cases}$$

find the conditional distribution of (X/Y) hence p(x = 1/y = 2) (6 Marks)

QUESTION TWO: (20 MARKS)

a) Suppose that X and Y are two discrete random variables j. p. d. f

$$f(x,y) = \begin{cases} \frac{1}{54}(x+y) & x = 1,2,3\\ y = 1,2,3,4\\ elsewhere \end{cases}$$
i) Verify that $f(x,y)$ is a joint $p. d. f$
(5 Marks)
ii) Compute $P(y > x)$
(4 Marks)
iii) compute $p(x \le 3)$
(3 Marks)
iv) Find $P(x + y = 4)$
(3 Marks)
b) Suppose that you have a joint p.d.f of x and y given by

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y) & 0 < x < 1\\ 0 & elsewhere \end{cases}$$

Find the marginal density functions of x and y

QUESTION THREE: (20 MARKS)

a) Given the continuous *j*.*p*.*d*.*f*

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4} & 0 < x < 2 \ , \ 0 < y < 1 \\ 0 & o/w \end{cases}$$

Find;

- i) $f_1(x)$ (5 Marks)
- ii) $f_2(y)$

iii)
$$f(x/y)$$

b) Suppose the *j*.*p*.*d*.*f* of *x* and *y* is given by;

$$f(x,y) = \begin{cases} 12xy(1-y) & 0 < x < 1\\ 0 & 0 < y < 1\\ 0 & o/w \end{cases}$$

Determine whether or not x and y are statistically independent

(5 Marks)

(5 Marks) (5 Marks)

(5 Marks)

QUESTION FOUR: (20 MARKS)

Suppose x and y are discrete random variables with j. p. d. f given as

х

		0	1	2	$f_2(y)$
	0	3	9	3	15
y		28	28	28	28
2	1	6	6		12
		28	28	0	28
	2	1	0		1
		28		0	28
	$f_1(x)$	10	15	3	
		28	28	28	1

Determine

- i) E(X)
- ii) E(Y)
- iii) Var(x)
- iv) Var(y)
- v) Correlation coefficient of X and Y

QUESTION FIVE: (20 MARKS)

a) Given the dispersion matrix of X and Y

$$\sum = \begin{bmatrix} 3 & \frac{1}{3} \\ \frac{1}{3} & 2 \end{bmatrix}$$

Compute:

Variance of 3x + 4y - 5

(5 Marks)

b) Let $y_1 < y_2 < y_3 < y_4$ denote order statistics of a random sample size of 54 having a pdf $f(x) = \begin{cases} 2x & 0 < x < 1 \\ 0 & 0/w \end{cases}$ o/w

i) Compute the pdf of y_3 in terms of $F(x)$ and $f(x)$	(5 Marks)
ii)Find $P(y_3 > \frac{1}{2})$	(5 Marks)

c) Let \bar{x} be the mean of a random sample of size 5 from a normal distribution with $\mu =$ 0 and $\delta^2 = 125$. determine the value of c such that $p(\bar{x} < c) = 0.90$ (5 Marks)

(3 Marks) (3 Marks) (5 Marks) (5 Marks) (4 Marks)