

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FOURTH YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF BUSINESS INFORMATION TECHNOLOGY KMA 2413 - STOCHASTIC MODELS IN OPERATIONAL RESEARCH

Date: 17TH April, 2023 Time: 11:30 am 1:30pm

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS</u>

QUESTION ONE (30 MARKS)

a) b) c) d)	i) ii) iii) Explai Let X a respect $\theta_1 + \theta_2$	the following terms as used in stochastic modelling; Moments Generating Function Random walk Probability Generating Function n any two differences between stochastic and deterministic models. and Y be independent Poisson distribution random variables with parameters E tively. Show that $Z = X + Y$ is also distributed Poisson random variable with that the Bernoulli random variable x has a probability density function;		
		$p[X = k] = p_k, k = 0, 1, 2 \dots$		
	Detern	nine the probability generating function.	(5 Marks)	
e)		that E_i , E_j and E_k are states in a Markov chain. If E_k is reachable from E_i ble from E_k . Show that E_k is reachable from E_j .	and E_i is (6 Marks)	
f)		n reasons for studying stochastic process modeling at University level.	(4 Marks)	
QUES	STION '	<u>ГWO (20 MARKS)</u>		
a)	In a certain country, the distribution of population in urban and rural areas is 40% and 60% respectively. It is expected that every year 20% of those in urban areas migrate to rural areas and 30% of those in rural areas migrate to urban areas.			
	i) ii)	What will be the distribution of the population 2 year from now. What will be the distribution of the population in the long run?	(4 Marks) (4 Marks)	
b)	i) Generate the probability generating function of a Negative Binomial distribu		tion. (6 Marks)	
	ii)	Find the mean and variance of the distribution.	(6 Marks)	

QUESTION THREE (20 MARKS)

a) Let X be a Poisson distribution for the form;

$$P(X=k) = p_k = \begin{cases} \frac{e^{-\tau_{\tau}k}}{k!}, k = 0, 1, 2 \dots \\ 0, otherwise \end{cases}$$

Calculate the probability generating function of *X* and hence or otherwise find the mean and variance of τ . (8 Marks)

- b) Given that $S_N = X_1 + X_2 + ... + X_N$ where X is are independent random variables from a binomial distribution with parameters n_i and p for i = 1, 2 ... N.
 - i)Find the distribution of SN(5 Marks)ii)From (i) derive the E (SN) and Var (SN).(7 Marks)

QUESTION FOUR (20 MARKS)

a)	Let <i>X</i> have a distribution of the Geometric form of the function, $P[X = k] = q^{k-1}$, 1,2,3		
	i)	Obtain the probability generating function of X	(7 Marks)
	ii)	Find the mean and variance of X.	(7 Marks)

b) State any three applications of stochastic modelling in business information technology

(6 Marks)

QUESTION FIVE (20 MARKS)

a)	Defi	the following terms as used in stochastic modelling;	
	i)	An absorbing State	(2 Marks)
	ii)	Irreducible markov chain	(2 Marks)
	iii)	Period of a state of a markov chain	(2 Marks)
	iv)	Transition probability	(2 Marks)
b)	You	are given the following matrix	
		$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$	

i)	Show that the above stochastic matrix is doubly matrix.	(6 Marks)
ii)	Show that the above chain is irreducible and aperiodic.	(6 Marks)