

Kasarani Campus Off Thika Road Tel. 2042692 / 3

P. O. Box 49274,

00100

NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

KMA 207: THEORY OF ESTIMATION

Date: 14th August, 2023 Time: 11.30am – 1.30pm

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

a) Distinguish between;

i) Consistency and Efficiency.

(2 Marks)

ii) Point and Interval estimator.

(2 Marks)

b) Consider a random variable X with pdf

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{\frac{-x}{\theta}}, x > 0\\ 0, otherwise \end{cases}$$

i) Find the moment estimator of θ .

(4 Marks)

ii) Show that the moment estimator obtained in i) is unbiased.

(2 Marks)

c) Let x_1, x_2, \dots, x_n be a random sample of size n from be a random variable X with p.m.f

$$f(x,p) = \begin{cases} p^{x}(1-p)^{1-x}, x=0,1\\ 0, Otherwise \end{cases}$$

Determine the sufficient statistic for p.

(5 Marks)

d) Let x_1, x_2, \dots, x_n be a random sample of size n from be a random variable X with a normal density

$$f(x,\mu) = \begin{cases} \frac{1}{2\sqrt{\pi}} e^{\frac{-1}{4}(x-\mu)^2}, -\infty < x < \infty \\ 0, Otherwise \end{cases}$$

Find the maximum likelihood estimator of μ .

(5 Marks)

e) Consider a random sample $y_1, y_2, y_3, ..., y_n$ of size n from Y with pdf

$$f(y,\alpha) = \begin{cases} \alpha e^{-\alpha y}, y > 0\\ 0, Otherwise \end{cases}$$

Find the Cramer-Rao lower bound of $\psi(\alpha) = \frac{1}{\alpha}$.

(5 Marks)

f) To compare customer satisfaction levels of two competing cable television companies, 174 customers of Company 1 and 355 customers of Company 2 were randomly selected and were asked to rate their cable companies on a five-point scale, with 1 being least satisfied and 5 most satisfied. The survey results are summarized in the following table below;

Company 1	Company II		
$n_1 = 174$	$n_2 = 355$		
$\bar{x}_1 = 3.51$	$\bar{x}_2 = 3.24$		
$s_1 = 0.51$	$s_2 = 0.52$		

Construct a point estimate and a 99% confidence interval for $\mu_1 - \mu_2$, the difference in average satisfaction levels of customers of the two companies as measured on this five-point scale.

(5 Marks)

QUESTION TWO (20 MARKS)

a) State the three Cramer-Rao regular conditions.

- (3 Marks)
- b) Show that under the regular conditions above, the Cramer-Rao inequality is given by

$$Var(T) \leq \ddot{\iota} \ddot{\iota}$$

Where $I(\theta) = E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial^2 \theta}\right)$, $\psi(\theta)$ is any function of θ and T is unbiased estimator of $\psi(\theta)$.

c) Let x_1, x_2, \dots, x_n be a random sample of size n from be a random variable X with a normal density

$$f(x,\mu) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2\sigma^2}(x-\mu)^2}, -\infty < x < \infty \\ 0, Otherwise \end{cases}$$

i) Find the Cramer-Rao lower bound of $\psi(\mu) = \mu$.

(4 Marks)

ii) Hence find the UMVUE of μ , if it exists.

(2 Marks)

QUESTION THREE (20 MARKS)

- a) Let $x_1, x_2, ..., x_m$ be a random sample of size m from X $N(\mu_1, \sigma_1^2)$, where both parameters are unknown. Let $y_1, y_2, ..., y_n$ be another independent random sample from Y $N(\mu_2, \sigma_2^2)$, also both parameters are unknown. Derive $100(1-\alpha)$ % confidence intervals for the difference in population means $\mu_1 \mu_2$, where both X and Y are independent variables. (10 Marks)
- b) Two independent random samples were obtained from two independent random variables X N i and $Y N(\mu_2, \sigma^2)$, that is $\sigma_1^2 = \sigma_2^2 = \sigma^2$ but unknown. The observations are as follows;

X: 20, 33, 57, 22, 44, 31, 33, 40

Y: 44, 55, 36, 65, 38, 45, 54, 50, 48, 62

Obtain 99% confidence intervals for the difference in the two population means. (10 Marks)

QUESTION FOUR (20 MARKS)

- a) A random sample of size 10 had a mean $\overline{X} = 20$ and a standard deviation s = 18. Obtain 95% confidence intervals for true population variance σ^2 . (5 Marks)
- b) A random variable X has a pdf given by the gamma density

$$f(x;\alpha,\beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma \alpha} x^{\alpha-1} e^{\frac{-x}{\beta}}, x > 0 \\ 0, otherwise \end{cases}$$

- i) Find the moment estimators of α and β . (10 Marks)
- ii) The failure time in years of a certain machine observed over time are;

If this failure time can be model using a gamma distribution above, determine the moment estimates of $\alpha \wedge \beta$. (5 Marks)

QUESTION FIVE (20 MARKS)

a) Let $X = (x_1, x_2, \dots, x_n)$ be a random sample of size n from be a random variable X with p.m.f

$$f(x,p) = \begin{cases} p^{x}(1-p)^{1-x}, x=0,1\\ 0, Otherwise \end{cases}$$

Find;

- i) The joint probability distribution P(X,T). (4 Marks)
- ii) The distribution of the statistic T. (4 Marks)
- iii) The conditional probability distribution P(X/T), hence show that $T = \sum x_i$ is sufficient for p. (3 Marks)
- b) A response variable Y is related with two variables X_1 and X_2 in the form $Y = a_0 + a_2 X_1 + e_i$. Data on seven sampled items are as shown in the table below;

Y	12	22	17	15	21	23	25
X_1	5	8	7	6	8	9	11

- i) Use matrix notation to fit the given linear model. (7 Marks)
- ii) Estimate the variance of each parameter given that e_i N(0,1). (2 Marks)