

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR FOURTH YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

KMA 2417 TIME SERIES ANALYSIS

Date: 12TH AUGUST, 2024 Time: 8:30 AM – 10:30 AM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS QUESTION ONE: COMPULSORY (30 MARKS)

(a) Discuss four uses of time series analysis in statistics.

(4 Marks)

(b) Consider the AR(2) process and show that $X_t = 0.8X_{t-1} - 0.15X_{t-2} + e_t$ is weakly stationary (6 Marks)

(c) Given the following observation of a time series for n = 10

t	1	2	3	4	5	6	7	8	9	10
X_t	47	64	23	71	38	64	55	41	59	48

Find

i. Sample auto-covariance r(1) and r(2)

(5 Marks)

ii. Sample auto-correlation p(1) and p(2)

(5 Marks)

(d) Consider MA (2) process given by $Y_t = e_t - \frac{5}{10}e_{t-1} - \frac{4}{10}e_{t-2}$

Determine

i. Whether the process is invertible

(3 Marks)

ii. The covariance generating function

(4 Marks)

iii. The autocorrelation function

(3 Marks)

QUESTION TWO: (20 MARKS)

- a) Consider a set of independent and identically distributed random variable $\{e_t\}$ such that E (e_t) is zero and variance of e_t is σ_e^2 . Let the process be given by $X_t = \emptyset e_{t-1} + e_t$ where \emptyset is a constant.
- i) Find the $E(x_t x_{t+m})$

(5 Marks)

ii) Show that X_t is weakly stationary.

(5 Marks)

- b) Given $X_t = \theta X_{t-1} + e_t$
 - i. Find the spectral density function of an AR (1) process

(5 Marks)

ii. Show that the spectral density function of an AR (1) process is given by (5 Marks)

$$f(\omega) = \frac{\sigma^2}{2\pi(1 - 2\theta\cos\omega + \sigma^2)}$$

NB: The standard spectral density function of the white noise if $f_e(\omega) = \frac{\sigma^2}{2\pi}$

QUESTION THREE: (20 MARKS)

a) Discuss four components of a time series data.

(8 Marks)

b) Fit a local polynomial of degree 3 to 7 consecutive data points given the weight.

$$w = \frac{1}{21}(-2, 3, 6, 7, 6, 3, -2)$$

Find derivatives with respect to parameters

(5 Marks)

Fit a local polynomial and extract the coefficients

(7 Marks)

QUESTION FOUR: (20 MARKS)

a) Determine whether the process is invertible

(4 Marks)

$$X_t = e_t + 0.7e_{t-1} - 0.2e_{t-2}$$

b) Determine if the process $x_t = 1.5x_{t-1} - 0.5x_{t-2} + e_t$ is stationary

(4 Marks)

c) Find the covariance generating function of the MA (2) process given by

$$x_t = \frac{1}{3}e_{t-1} + \frac{1}{3}e_t + \frac{1}{3}e_{t+1}$$

(6 Marks)

Hence the autocorrelation function

(6 Marks)

QUESTION FIVE: (20 MARKS)

a) Consider the AR (2) process given by $x_t = \frac{4}{5}x_{t-1} - \frac{15}{100}x_{t-2} + e_t$. Show that x_t

i. Is stationary

(5 Marks)

ii. Find its autocorrelation function.

(5 Marks)

9

b) Given the following observation of a time series for n = 10

2 t 1 0.812 1.657

3 2.537 5

3.431

4.329

6 5.254 6.174

8 7.104 8.044 10

XtFind:

i. Sample auto-covariance r(1) and r(2)

(5 Marks)

ii. Sample auto-correlation p(1) and p(2)

(5 Marks)

8.956