

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS) (SPECIAL EXAMINATION)

KMA 209: ALGEBRA

DATE: 6TH DECEMBER 2024 TIME: 2:30PM – 4:30PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE: COMPULSORY (30 MARKS)

- 1) Define the following terms
 - (i) Group
 - (ii) Binary operation

(iii) Permutation

(6 Marks)

b) Prove that for all $a,b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$

- (4 Marks)
- c) Define * on Q^+ by $a * b = \frac{ab}{2}$. Show that $(Q^+,*)$ is a group.
- (4 Marks)
- d) Define an abelian group and prove that every cyclic subgroup is abelian.
- (4 Marks)

e) Show that every division ring is a ring without zero divisor.

- (5 Marks)
- f) Define transposition and list the even and odd permutations in S_3
- (4 Marks)

g) Prove that every field is an integral domain.

(3 Marks)

QUESTION TWO: (20 MARKS)

- 1) Let G denote the set of all ordered pairs of real numbers with non-zero first component of the binary operation * is defined by (a,b)*(c,d)=(ac,bc+d). Show that (G,*) is a non-abelian group. (8 Marks)
- 2) Let A be a non-empty set and let S_A be the collection of all permutations of A. Show that S_A is a group under permutation multiplication. (7 Marks)
- 3) An identity element (if it exist) of mathematical system (S,*) is unique. Prove. (5 Marks)

QUESTION THREE: (20 MARKS)

a) Let m be a fixed positive integer in Z. Define the relation \equiv_n on Z as follows for all

$$x, y \in \mathbb{Z}$$
. $x \equiv_n y$ iff $\frac{n}{x - y}$ i.e $x - y = nk$. Show that \equiv_n is an equivalence relation in \mathbb{Z} .

(6 Marks)

b) Let $f: G \to G_1$ be a group homomorphism. Show that kernel of f is a normal subgroup of G.

c) Show that every subgroup of an abelian group is normal

QUESTION FOUR: (20 MARKS)

- a) Define normal subgroup and prove that every subgroup of index 2 is normal. (6 Marks)
- b) Let H be a normal subgroup of G. Denote the set of all left cosets $\{aH \mid a \in G\}$ by $\frac{G}{H}$ and

define * in
$$\frac{G}{H}$$
 for all $aH, bH \in \frac{G}{H}$ by $(aH)*(bH)=abH$. Show $(\frac{G}{H},*)$ is a group

(8 Marks)

c) Let R_1 and R_2 be subrings of R. Show that $R_1 \cap R_2$ is a subring of R. (6 Marks)

QUESTION FIVE: (20 MARKS)

- a) State the Lagrange's Theorem (3 Marks)
- b) List all the elements of a symmetric group of order 3 and construct a multiplication table for S_3 (12 Marks)
- c) Prove that any two, right and left cosets of H in G are disjoint. (5 Marks)