

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212

Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2022/2023 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

Date: 1st August, 2022 Time: 11.30am –1.30pm

KMA 2204 - LINEAR ALGEBRA 11

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

- a) i) Compute $\langle u, v \rangle$ using the inner product \mathbb{R}^2 defined by $\langle u, v \rangle = 4u_1v_1 + 2u_2v_2$ where u = (-1,3), v = (4,5). (2 Marks)
 - ii) Use the inner product defined by $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$ to compute the $\langle f,g \rangle$ for the vectors of f(x) = x and $g(x) = x^2 + 1$ in C[0,1]. (3 Marks)
- b) i) Verify the Cauchy-Schwartz inequality for the vectors u = (-3, 3), v = (5, 6) in \mathbb{R}^2 (3 marks)
 - ii) Find the norm of the vector q(x) = 1 + x using the integral inner product defined as $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$

(3 marks)

Find the matrix A of the quadratic form $Q(x) = 3x^2 + 2y^2 + z^2 + 4xy + 4yz.$

What are the eigenvalues of A? Is A positive definite? (5marks)

d) For a matrix $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$

i) Write down the characteristic equation (2 marks)ii) Find the eigenvalues. (2 marks)

iii) Find the eigenvectors corresponding to each eigenvalue (3marks)

Find the angle between the vectors x = (1,4,-1) and y = (-1,4,2) using the Euclidean inner e) product.

(3 marks)

Given that $B = \{p_1, p_2, p_3\} = \{-2, -4x, 5x^2 - 1\}$ is a basis for P_2 . Find the coordinate vector of $p = 4 - 2x + 3x^2$ with respect to P. f) (2 marks)

QUESTION TWO (20 MARKS)

- Consider the standard basis for p_2 , $B = \{1, 1 + x, 1 + x + x^2\}$, and $C = \{2 + x + x^2, x + x^2, x\}$. a)
 - i) Find the transition matrix from B to C. (6 marks)
 - ii) Use the result in (i) to find the change of basis matrix from C to B.

(8 marks)

Express the matrix $A = \begin{bmatrix} -1 & -4 \\ -4 & 5 \end{bmatrix}$ in the form PDP^{-1} , where D is diagonal. b)

(6 marks)

QUESTION THREE (20 MARKS)

Find a matrix P which orthogonally diagonalizes a)

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

(10 marks)

Identify the curve, by first using a suitable rotation to put the following quadratic equation into b) standard conic section. $5x^2 - 4xy + 5y^2 - 48 = 0$

$$5x^2 - 4xy + 5y^2 - 48 = 0$$

(10 marks)

QUESTION FOUR (20 MARKS)

Let

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

i) Find eigenvalues of A.

(6 marks)

- Use Cayley-Hamilton theorem to find A^3 and A^{-1} (if it exists) for the matrix A. ii) (8 marks)
- Verify that the following is an inner product on P_2 . b)

$$\langle p(x), q(x) \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$
, where

$$p(x) = a_0 + a_1, x + a_2 x^2, q(x) = b_0 + b_1 x + b_2 x^2$$
(6 marks)

QUESTION FIVE (20MARKS)

- a) Let \mathbb{R}^3 have the Euclidean inner product. For which values of k are u and v orthogonal? Given = (k, k, 1), v = (k, 5, 6). (6 Marks)
- b) Tranform the set $S = \{1, x, x^2\}$ which is a basis of P_2 into an orthonormal basis with respect to the integral inner product defined as $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$.

(14 Marks)