

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS (SPECIAL EXAMINATION) <u>KMA 209 ALGEBRA</u>

Date: 12TH AUGUST, 2024 Time: 8:30 AM – 10:30 AM

<u>INSTRUCTIONS TO CANDIDATES</u> ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE: COMPULSORY (30 MARKS)

a) Define the following terms	
(i) Group	
(ii) Binary operation	
(iii) Permutation	(6 Marks)
b) Prove that for all $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$	(4 Marks)
c) Define * on Q^+ by $a * b = \frac{ab}{2}$. Show that $(Q^+, *)$ is a group.	(4 Marks)
d) Define an abelian group and prove that every cyclic subgroup is abelian.	(4 Marks)
e) Show that every division ring is a ring without zero divisor.	(5 marks)
f) Define transposition and list the even and odd permutations in S_3	(4 Marks)
g) Prove that every field is an integral domain.	(3 Marks)

QUESTION TWO: (20 MARKS)

- a) Let G denote the set of all ordered pairs of real numbers with non-zero first component of the binary operation * is defined by (a,b)*(c,d)=(ac,bc+d). Show that (G,*) is a non-abelian group. (8 Marks)
- b) Let A be a non-empty set and let S_A be the collection of all permutations of A. Show that S_A is a group under permutation multiplication. (7 Marks)
- c) An identity element (if it exist) of mathematical system (S,*) is unique. Prove. (5 Marks)

QUESTION THREE: (20 MARKS)

- a) Let *m* be a fixed positive integer in *Z*. Define the relation \equiv_n on *Z* as follows for all $x, y \in Z$. $x \equiv_n y$
 - iff $\frac{n}{x-y}$ i.e. x-y=nk. Show that \equiv_n is an equivalence relation in Z. (6 Marks)
- b) Let $f: G \to G_1$ be a group homomorphism. Show that kernel of f is a normal subgroup of G.

(8 Marks) (6 marks)

c) Show that every subgroup of an abelian group is normal

QUESTION FOUR: (20 MARKS)

- a) Define normal subgroup and prove that every subgroup of index 2 is normal. (6 Marks)
- b) Let *H* be a normal subgroup of *G*. Denote the set of all left cosets $\{aH \mid a \in G\}$ by $\frac{G}{H}$ and define * in

$$\frac{G}{H} \text{ for all } aH, bH \in \frac{G}{H} \text{ by } (aH) * (bH) = abH. \text{ Show } \left(\frac{G}{H}, *\right) \text{ is a group}$$
(8 Marks)

c) Let R_1 and R_2 be subrings of R. Show that $R_1 \cap R_2$ is a subring of R. (6 Marks)

QUESTION FIVE: (20 MARKS)

a)	State the Lagrange's Theorem	(3 Marks)
b)	List all the elements of a symmetric group of order 3 and construct a multiplication table for	S_3
		(12 Marks)
c)	Prove that any two, right and left cosets of H in G are disjoint.	(5 Marks)