

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2022/2023 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

Date: 13th April, 2022 Time: 8.30am – 10.30am

KMA 105 - DISCRETE MATHEMATICS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

- a) List the members of these sets
 - i) $\{x \mid 5 \le x \le 30 \text{ and } x \text{ is a sexy prime}\}$
 - ii) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$

(4 marks)

- b) Write the inverse, converse and contrapositive of the given statement "If Kenya can qualify for AFCON, then Kenya can finish third in the competition (3 marks)
- c) Suppose that *A* is the set of sophomores at your school and *B* is the set of students in discrete mathematics at your school. Express each of these sets in terms of *A* and *B*.
 - i) the set of sophomores taking discrete mathematics in your school (1 mark)
 - ii) the set of sophomores at your school who are not taking discrete mathematics

(1 mark)

- the set of students at your school who either are sophomores or are taking discrete mathematics (1 mark)
- iv) the set of students at your school who either are not sophomores or are not taking discrete mathematics (1 marks)
- d) If $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 8, 5\}$ find $A \times B$ and $|A \times B|$

(4 marks)

e) Let $f, g: \mathbb{R} \to \mathbb{R}$ be the function with the rule $f(x) = \frac{2}{3}x - 2$ and $g(x) = \frac{5}{2}x + 5$. Find $f \circ g$ and $g \circ f$

(4 marks)

(4 marks)

- f) Prove that if n is an integer and 3n + 2 is odd, then n is odd using a proof by contraposition (3 marks)
- Using set identities show that for any two sets $A B = A I B^c$
- h) Let *p* and *q* be the propositions *p*: I played in AFCON for the first time. *q*: I won the AFCON.

Express proposition $\neg p \lor (p \land q)$ as an English sentence.

(4 marks)

QUESTION TWO (20 MARKS)

- a) Express the negations of the following propositions using quantifiers and in English
 - i) There is a student in this class who has never seen a computer
 - ii) Every student in this class likes mathematics
 - iii) There is a student in this class who has been in at least one room of every building on campus

(3 marks)

- b) Given that f(x) = 2x, $g(x) = x^2$ and h(x) = x+1, find:
 - i) $f \circ (g \circ h)$
 - ii) $g \circ (f \circ h)$ (4 marks)
- A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three popular options, air-conditioning (*A*), radio (*R*), and power windows (*W*), were already installed. The survey found: 15 had air-conditioning (*A*), 5 had *A* and *W*, 12 had radio (*R*), 9 had *A* and *R*, 3 had all three options. 11 had power windows (*W*), 4 had *R* and *W*. Represent this information in a well labelled Venn diagram and hence find the number of cars that had:
 - i) only W (2 marks)
 - ii) R and W but not A (2 marks)
 - iii) only one of the options (2 marks)
 - iv) none of the options (2 marks)
- d) Construct a truth table to show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent. (5 marks)

QUESTION THREE (20MARKS)

- a) Use a direct proof to show that if n is an even integer, then 4 divides n^2 (4 marks)
- b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x 3. Find f^{-1} (4 marks)
- c) Determine the power set P(A) of $A = \{a, b, c, d\}$. (4 marks)
- d) Using a Venn diagram to show that $\overline{A \cup B} = \overline{A} \cap \overline{B}$, if A and B are sets (4 marks)
- e) Use mathematical induction to prove that $1+2+2^2+2^3+\Lambda+2^n=2^{n+1}-1$ (4 marks)

QUESTION FOUR (20 MARKS)

- a) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 7x^2 + 1$ and $g(x) = x^3 2$. Find the formula for the composition functions $g \circ f$, $f \circ g$ and $f \circ f$ (6 marks)
- b) Show that for any two sets $A B = A \cap B^c$ using a Venn diagram

(3 marks)

c) Prove that \sqrt{p} is irrational by contradiction

(7 marks)

d) Show that the propositions $p \to q$ and $\neg p \lor q$ are logically equivalent.

(4 marks)

QUESTION FIVE (20 MARKS)

- a) Distinguish between a tautology and a contradiction (3 marks)
- b) Use mathematical induction to prove that $12^n 1$ is divisible by $11, \forall n \in \mathbb{N}$. (7 marks)
- c) Find the number of integers between 1 and 100 inclusively that are divisible by either 3, 5 or 7 (5 marks)
- d) Let p and q denote: "I do not study", and "I fail" respectively. State the verbal translation of each of the following
 - i) $p \wedge q$
 - ii) $\neg p \lor q$
 - iii) $\neg p \land \neg q$
 - iv) $\neg (p \lor \neg q)$
 - v) $\neg (\neg p \lor \neg q)$ (5 marks)