

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2022/2023 ACADEMIC YEAR FOURTH YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

KMA 410 - MULTIVARIATE STATISTICAL METHODS I

Date:14th April 2022 Time:8.30am-10.301m

INSTRUCTIONS TO CANDIDATES ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Define

i) A random variable.	(1 mark)
ii) Random Vector.	(1 mark)
iii) Random matrix.	(1 mark)

b) Explain how a multivariate data are arranged.

(3 marks)

c) The data below show the score of six students in mid-semester and end of semester examination

Mid-semester	28	12	17	24	30	9
End of semester	60	20	45	40	52	30

Estimate:

1)	Mean vector.	(2 marks)
ii)	Covariance matrix.	(4 marks)
iii)	Correlation Matrix.	(2 marks)

d) Suppose that $\underline{X}' = (X_1, X_2, X_3)$ be a 3-dimensional random vector with a joint probability distribution

$$f(x_1, x_2, x_3) = \begin{cases} k(x_1x_2 + x_1x_3), & x_1 = 1, 2, 3 \ x_2 = 2, 3, 4 \& x_3 = 1, 2 \\ 0, & elsewhere \end{cases}$$

Determine:

i) Value of the constant K.	(3 marks)
ii) Marginal distribution of X_1 .	(3 marks)
iii) Joint marginal distribution of X_2 and X_3 .	(2 marks)
iv) Conditional distribution of X_1 given that $X_2 = x_2$ and $X_3 = x_3$.	(2 marks)
v) Are X_2 and X_3 jointly independent of X_1 ? Give a reason to your answer.	(2 marks)

e) Given that a random vector $\underline{X}' = (X_1, X_2, X_3)$ has a mean vector $\underline{\mu}' = (10, 5, 30)$ and covariance matrix $\Sigma = \begin{bmatrix} 25 & 6 & 20 \\ 6 & 16 & 15 \\ 20 & 15 & 36 \end{bmatrix}$, find the mean and variance of $Y = X_1 + 3X_2 - X_3$. (4 marks)

QUESTION TWO (20 MARKS)

- a) Suppose that $X_{p\times 1}$ be a p-dimensional random vector with mean $\mu_{p\times 1}$ and covariance matrix covariance matrix $\Sigma_{p\times p}$.
 - (i) Show that $\Sigma = E(X \mu)'(X \mu)$. (4 marks)
 - (ii) Suppose that Y = a'X where **a** is a $1 \times p$ vector of constants. Show that the mean and variance of Y are $\mu_{\nu} = a'\mu$ and $\Sigma_{\nu} = a'\Sigma a$ respectively. (5 marks)
 - (iii) Suppose that W = AX where A is a $q \times p$ matrix of constants. Show that the mean vector and covariance matrix of W are $\mu_w = A\mu$ and $\Sigma_w = A\Sigma A'$. (5 marks)
- b) Given that a random vector $\mathbf{X}' = (X_1, X_2, X_3)$ has a mean vector $\boldsymbol{\mu}' = (-1, 0, 3)$ and covariance matrix $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 9 & 3 \\ -1 & 3 & 4 \end{bmatrix}$. Let $\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ where $Y_1 = X_1 + X_2 X_3$ and $Y_2 = 2X_2 + X_3$. Find the mean vector and variance covariance matrix of \mathbf{Y} . (5 marks)

QUESTION THREE (20 MARKS)

- a) Write down the general form of a multivariate normal distribution. (2 marks)
- b) Find the m.g.f. of the multivariate normal distribution in (a). (12 marks)
- c) From the m.g.f. in (b), determine the mean and variance of a multivariate normal random variable. (6 marks)

QUESTION FOUR (20 MARKS)

- a) If $\mathbf{X}^T = \begin{bmatrix} X_1, X_2 \end{bmatrix}$ is a bivariate distributed as $\mathbf{X} \sim N(\boldsymbol{\mu}_X, \boldsymbol{\Sigma}_X)$ where $\boldsymbol{\mu}_X = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}$ and $\boldsymbol{\Sigma}_X = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$. Show that the conditional distribution of \mathbf{X}_1 given $\mathbf{X}_2 = x_2$ is given as $N(\boldsymbol{\mu}_1 + \frac{\sigma_{12}}{\sigma_{22}}(\mathbf{x}_2 \boldsymbol{\mu}_2), (1 \rho_{12}^2)\sigma_{11})$ (10 marks)
- b) The random vector $\mathbf{X}^T = [X_1, X_2, X_3, X_4]$ is normally distributed with a mean vector $\mathbf{\mu}_X^T = [2,5,3,6]$ and covariance matrix

$$\Sigma_X = \begin{bmatrix} 11 & 5 & 2 & 3 \\ 5 & 4 & 1 & 0 \\ 2 & 1 & 3 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$$

Find the parameters of the distribution of conditional of X_1 , X_3 given that $X_2 = 1$ and $X_4 = 4$. (10 marks)

QUESTION FIVE (20 MARKS)

- a) Suppose a coin is tossed three times and the side facing up is recorded. Let X_1 be the number of heads in the first two tosses and X_2 be the total number of tails in each outcome. Obtain;
 - i) The joint probability distribution of X_1 and X_2 . (4 marks)
 - ii) Marginal distributions of X_1 and X_2 . (2 marks)
 - iii) Mean vector of $X' = (X_1, X_2)$. (3 marks)
 - iv) Covariance matrix of X. (5 marks)
- b) Let X be a four dimensional random vector with the joint pdf given by

$$f(x_1, x_2, x_3 | x_4) = \begin{cases} \frac{3}{4}(x_1^2 + x_2^2 + x_3^2 + x_4^2), & 0 < x_1, x_2, x_3, x_4 < 1\\ 0, & Otherwise \end{cases}$$

Find the
$$P\left(X_1 < \frac{1}{2}, X_2 < \frac{3}{4}, X_4 > \frac{1}{2}\right)$$
 (6 marks)