

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212

Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2022/2023 ACADEMIC YEAR THIRD YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE) SPECIAL EXAMINATION

Date: 3rd August, 2022 Time: 11.30am –1.30pm

KMA 311 - PARTIAL DIFFERENTIAL EQUATIONS

INSTRUCTIONS TO CANDIDATES

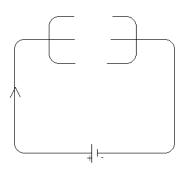
ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Define a real valued function in more than one independent variable. (4marks)

b) State the domain and range of the functions below; (6marks)

Function	Domain	Range
$z = \sqrt{y - x^2}$		
$z = \sin xy$		
$w = \frac{1}{x^2 + y^2 + z^2}$		


- c) Let $f(x, y) = x^2y + 3x^2y^2 5$. Find
 - i. $\frac{\partial f}{\partial x}$
 - ii. $\frac{\partial^2 f}{\partial v^2}$ (4marks)
- d) Describe the level surface of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ (5marks)
- e) The plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the paraboloid at (1,2,5).
- f) Given the following partial differential equations, state their linearity, order, dependent and independent variables;

i.
$$x^2 \frac{\partial^3 R}{\partial y^3} = y^3 \frac{\partial^2 R}{\partial x^2}$$
 (4marks)

ii.
$$\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = 1$$
 (4marks)

QUESTION TWO (20MARKS)

- a) Let $f(x, y) = x^2 + 3xy + y 1$. Find
 - i) $\frac{\partial f}{\partial x}$
 - ii) $\frac{\partial x}{\partial y}$ at the point (4,-5) (4marks)
- b) The function yz Inz = x + y defines z a function of the two independent variables x and y and given that the partial derivative exits, find $\frac{\partial z}{\partial x}$. (4marks)
- The resistors of R_1 , R_2 and R_3 Ohms are connected in parallel to make an R-Ohm resistor, where the value of R can be found from the equation $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$.

- Find the value of $\frac{\partial R}{\partial R_2}$ when $R_1 = 30$, $R_2 = 45$ and $R_3 = 90$ Ohms. (6marks)
- i). State and describe the equation for Transverse Vibrations of a Beam. (3marks)
 ii. Give the following characteristics of the equation; order, linearity and homogeneity. (3marks)

QUESTION THREE (20MARKS)

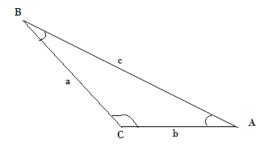
- a) Show that $u(x,t) = e^{-8t} \sin 2x$ is a solution to the boundary-value problem $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$ given $u(0,t) = u(\pi,t) = 0$ and $u(x,0) = \sin 2x$. (8marks)
- Show that V = F(y-3y) where F is an arbitrary function is a general solution of the partial differential equation $\frac{\partial v}{\partial x} + 3\frac{\partial v}{\partial y} = 0$. (5marks)

Hence find the particular solution which satisfies the equation $v(0, y) = 4\sin y$ (4marks)

c) Solve the partial differential equation
$$t \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial u}{\partial x} = x^2$$
 (3marks)

QUESTION FOUR (20MARKS)

a) Solve the boundary-value problem $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0, y) = 8e^{-3y}$ by the method of separation of variables. (10marks)


Further find u(x, y) given that $u(0, y) = 8e^{-3y} + 4e^{-5y}$ (6marks)

b) Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$
 (4marks)

QUESTION FIVE (20MARKS)

a) Find
$$\frac{\partial^2 f}{\partial y^2}$$
 if $f(x, y) = \frac{2y}{y + \cos x}$ (6marks)

- b) Find f_{yxyz} if $f(x, y, z) = 1 2xy^2z + x^2y$ (4marks)
- c) Given the obtuse angle triangle ABC, express A implicitly as a function of a, b and c. Hence calculate $\frac{\partial A}{\partial a}$ (5marks)

d) Solve the boundary value problem $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$, u(0,t) = 0, u(3,t) = 0, $u(x,0) = 10 \sin 2\pi x - 6 \sin 4\pi x$ (5 marks)