

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY **UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR** FOURTH YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

KMA 2403 TIME SERIES ANALYSIS

Date: 12TH AUGUST, 2024 Time: 8:30 AM – 10:30 AM

INSTRUCTIONS TO CANDIDATES ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS **QUESTION ONE: COMPULSORY (30 MARKS)**

- (a) Discuss four uses of time series analysis in statistics.
- (b) Consider the AR(2) process and show that $X_t = 0.8X_{t-1} 0.15X_{t-2} + e_t$ is weakly (6 Marks) stationary
- (c) Given the following observation of a time series for n = 10

t	1	2	3	4	5	6	7	8	9	10
Xt	47	64	23	71	38	64	55	41	59	48

Find

- i. Sample auto-covariance r(1) and r(2)
- ii. Sample auto-correlation p(1) and p(2)

(d) Consider MA (2) process given by $Y_t = e_t - \frac{5}{10}e_{t-1} - \frac{4}{10}e_{t-2}$

Determine

i. Whether the process is invertible (3 Marks) ii. The covariance generating function (4 Marks) iii. The autocorrelation function (3 Marks)

QUESTION TWO: (20 MARKS)

a) Consider a set of independent and identically distributed random variable $\{e_t\}$ such that E (e_t) is zero and variance of e_t is σ_e^2 . Let the process be given by $X_t = \emptyset e_{t-1} + e_t$ where \emptyset is a constant.

i)	Find the $E(x_t x_{t+m})$	(5 Marks	5)
----	---------------------------	----------	----

Show that X_t is weakly stationary. (5 Marks) ii)

b) Given
$$X_t = \theta X_{t-1} + e_t$$

i. Find the spectral density function of an AR (1) process (5 Marks)

(4 Marks)

- (5 Marks) (5 Marks)

ii. Show that the spectral density function of an AR (1) process is given by (5 Marks)

$$f(\omega) = \frac{\sigma^2}{2\pi(1 - 2\theta \cos\omega + \sigma^2)}$$

NB: The standard spectral density function of the white noise if $f_e(\omega) = \frac{\sigma^2}{2\pi}$

QUESTION THREE: (20 MARKS)

- a) Discuss four components of a time series data.
- b) Fit a local polynomial of degree 3 to 7 consecutive data points given the weight.

$$w = \frac{1}{21}(-2, 3, 6, 7, 6, 3, -2)$$

- Find derivatives with respect to parameters i. (5 Marks)
- Fit a local polynomial and extract the coefficients (7 Marks) ii.

QUESTION FOUR: (20 MARKS)

a)	Determine whether the process is invertible	(4 Marks)
Xt	$= e_t + 0.7e_{t-1} - 0.2e_{t-2}$	

- b) Determine if the process $x_t = 1.5x_{t-1} 0.5x_{t-2} + e_t$ is stationary (4 Marks)
- c) Find the covariance generating function of the MA (2) process given by $x_t = \frac{1}{3}e_{t-1} + \frac{1}{3}e_t + \frac{1}{3}e_{t+1}$ (6 Marks)

Hence the autocorrelation function

QUESTION FIVE: (20 MARKS)

a) Consider the AR (2) process given by $x_t = \frac{4}{5}x_{t-1} - \frac{15}{100}x_{t-2} + e_t$. Show that x_t										
i.	Is statio	onary			5	10	0		(5	Marks)
ii.	ii. Find its autocorrelation function.							(5 Marks)		
b) Given the following observation of a time series for $n = 10$										
t	1	2	3	4	5	6	7	8	9	10
Xt	0.812	1.657	2.537	3.431	4.329	5.254	6.174	7.104	8.044	8.956
Find;										
i.	i. Sample auto-covariance $r(1)$ and $r(2)$ (5)								Marks)	

ii. Sample auto-correlation p(1) and p(2)

(6 Marks)

(5 Marks)

(8 Marks)