

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2024/2025 ACADEMIC YEAR FIRST YEAR, SECOND SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED STATISTICS AND DATA ANALYTICS

<u>KMA 5108: APPLIED MULTIVARIATE DATA ANALYSIS</u> DATE: 31ST JANUARY, 2025

TIME: 1:00 AM – 4:00 PM

<u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER THREE QUESTIONS</u>

QUESTION ONE: COMPULSORY (40 MARKS)

a) Let $\mathbf{X} = (X_1, X_2)'$ be a bivariate normal vector with known population covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

The sample mean vector based on a sample of size n = 25 is $\overline{X} = (3, 5)'$

At 5% significance level, test the hypothesis $H_0: \underline{\mu} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ against $H_1: \underline{\mu} \neq \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

(5 Marks)

b) Consider a trivariate normal vector $\mathbf{X} = (X_1, X_2, X_3)'$ with mean vector

$$\underline{\mu'} = (1, -1, 2)' \text{ and } \Sigma = \begin{bmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

Partition \underline{X} as $X_1 = X_1$ and $\underline{X}_2 = (X_2, X_3)'$. Find the conditional density of X_1 given \underline{X}_2 . Hence or otherwise, obtain the regression coefficients for the regression line of X_1 on X_2 and X_3 (6 Marks)

c) Given a trivariate normal density with variance-covariance matrix

$$\Sigma = \frac{1}{6} \begin{bmatrix} 4 & 2 & 1 \\ 2 & 7 & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{7}{4} \end{bmatrix}$$

Compute $R^{2}_{1.23}$

(4 Marks)

d) Let $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, suppose \underline{X} is partitioned such that $\underline{X} = \begin{bmatrix} \underline{X}_1 \\ \underline{X}_2 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$

Explain how Canonical Correlation Analysis can be used to test the hypothesis $H_0: \Sigma_{12} = 0$ against $H_1: \Sigma_{12} \neq 0$ (7 Marks)

- e) Explain the main objective in discriminant analysis. Hence or otherwise, derive the classification rule for classifying a new observation \underline{X} into either P_1 or P_2
 - (6 Marks)
- f) Suppose the data below is a random sample from a bivariate normal distribution

$$\underline{X}^{T} = \begin{pmatrix} 3 & 4 & 5 & 4 \\ 6 & 4 & 7 & 7 \end{pmatrix}^{T}$$

Obtain:

- i. The maximum likelihood estimate of the mean vector (3 Marks)
- ii. The maximum likelihood estimate of the covariance matrix (4 Marks)
- g) A random sample of size 10 was obtained from a bivariate normal population with mean vector μ and variance-covariance matrix Σ_0 (known) where

$$\Sigma_{0} = \begin{bmatrix} 4 & 4.2 \\ 4.2 & 9 \end{bmatrix}, \qquad \underline{\mu}_{0} = \begin{pmatrix} 6 & 5 \end{pmatrix}'. \text{ Given that } \underline{\overline{X}} = \begin{pmatrix} 5.8, & 5.2 \end{pmatrix}', \text{ carry out the test at}$$

$$\alpha = 0.01 \text{ level of significance for } \qquad \begin{array}{c} H_{0} : \underline{\mu} = \underline{\mu}_{0} \\ H_{1} : \mu \neq \mu_{0} \end{array}$$
(5 Marks)

QUESTION TWO: (20 MARKS)

a) In a physiological research on a given flower from a plant, the following four measurements (in cm.) were taken on each flower from 100 plants; sepal length (X_1), sepal width (X_2), petal length (X_3) and petal width (X_4). The results of the experiment were as follows:

$$\overline{\underline{X}} = \begin{bmatrix} \overline{\underline{X}}_{1} \\ \overline{\underline{X}}_{2} \\ \overline{\underline{X}}_{3} \\ \overline{\underline{X}}_{4} \end{bmatrix} = \begin{bmatrix} 5.936 \\ 2.770 \\ 4.260 \\ 1.326 \end{bmatrix} \text{ and } S = \begin{bmatrix} 0.260 & 0.085 & 0.183 & 0.054 \\ 0.085 & 0.098 & 0.083 & 0.091 \\ 0.183 & 0.083 & 0.221 & 0.073 \\ 0.054 & 0.091 & 0.073 & 0.039 \end{bmatrix} \text{ with characteristic roots}$$

$$\underline{\lambda} = \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \overline{\lambda}_{4} \end{bmatrix} = \begin{bmatrix} 0.4879 \\ 0.0724 \\ 0.0548 \\ 0.0098 \end{bmatrix} \text{ and } \text{ corresponding } \text{ Eigen vectors}$$

$$\beta = \begin{bmatrix} \frac{\beta_{1}}{0.68} & \frac{\beta_{2}}{-0.66} & \frac{\beta_{3}}{-0.26} & \frac{\beta_{4}}{-0.10} \\ 0.31 & 0.56 & 0.72 & -0.22 \\ 0.62 & 0.34 & 0.62 & -0.31 \\ 0.22 & 0.33 & 0.06 & 0.91 \end{bmatrix}$$

i. Using empirical test, obtain the expression for the principal components

ii. Also, obtain the percentage contribution of each component (3 Marks) b) Let $\underline{X}_1, \underline{X}_2, ..., \underline{X}_n$ be **n** independent observation vectors from a multivariate normal population with mean vector $\underline{\mu}$ and covariance matrix Σ . Define the sample mean vector $\underline{\overline{X}} = \frac{1}{n} \sum_{r=1}^{n} \underline{X}_r$ and sample covariance matrix as $S = ((S_{ij}))$,

$$S_{ij} = \frac{1}{n} \sum_{r=1}^{n} \left(X_{ri} - \overline{X}_{i} \right) \left(X_{rj} - \overline{X}_{j} \right)$$

- i. Derive the distribution of \overline{X} (Hint: show that $\overline{X} \sim N\left(\underline{\mu}, \underline{\Sigma}_{n}\right)$ (5 Marks)
- ii. Show that the sample covariance matrix S is biased for Σ (5 Marks)
- iii. Hence or otherwise, obtain the unbiased estimator for Σ (2 Marks)

OUESTION THREE: (20 MARKS)

a) The data below refers to nutritional contents of three diets. Variables measured are

$\underline{\mathbf{Y}} = \left[\mathbf{Y}_1 \left(Ascorbic \right), \mathbf{Y}_2 \left(Riboflavin \right) \right]'$						
Diet A $(n_1 = 2)$	Diet B $(n_2 = 3)$	Diet C $(n_3 = 3)$				
0.25 0.59		0.74 [1.25] [0.95]				
_1.50]'[1.78]	2.90]' 4.00]' 3.15	0.95]'[1.80]'[1.55]				

- i. Write down appropriate statistical model for analyzing this data (3 Marks)
- ii. Find the between groups (B) and within groups (W), SS and CP Matrices

iii.	Form a MANOVA Table	(5 Marks)
iv.	Test for equality of diet content at 0.1 level of significance	(4 Marks)

QUESTION FOUR: (20 MARKS)

a) Two bivariate normal populations are mixed together. It was later decided that the two populations be separated. The parameters of the two distributions are

$$P_1: \underline{X} \sim N_2(\underline{\mu}_1, \Sigma)$$
 and $\underline{\mu}_1 = (6.2, 3.8)'$

$$P_2: \underline{X} \sim N_2(\underline{\mu}_2, \Sigma)$$
 and $\underline{\mu}_2 = (5.8, 3.5)'$ and $\Sigma = \begin{bmatrix} 25 & 16\\ 16 & 16 \end{bmatrix}$

Construct the optimal linear discriminant rule and classify a new observation

$$\underline{X} = (6.0, 3.4)$$

b) The table below shows laboratory results of three characteristics of soil chemical contents (measured in milliequivalents per 100 g) from some 10 different locations. The variables are

 Y_1 = available soil calcium,

- Y_2 = exchangeable soil calcium,
- $Y_3 = turnip green calcium.$

(6 Marks)

(8 Marks)

Location	1	2	3	4	5	6	7	8	9	10
Y ₁	35	35	40	10	6	20	35	35	35	30
Y ₂	3.5	4.9	30.0	2.8	2.7	2.8	4.6	10.9	8.0	1.6
\mathbf{Y}_3	2.80	2.70	4.38	3.21	2.73	2.81	2.88	2.90	3.28	3.20

Assuming normal distribution, use the provided data to obtain the following:

- i. Mean vector(3 Marks)ii. Dispersion matrix(5 Marks)
- iii. Conditional distribution of Y_3 given $(Y_1, Y_2) = (27.0, 7.0)'$ (6 Marks)

QUESTION FIVE: (20 MARKS)

- a) Consider two bivariate normal populations $\mathbf{X}_1 \sim N_2(\underline{\mu}_1, \Sigma)$ and $\mathbf{X}_2 \sim N_2(\underline{\mu}_2, \Sigma)$ where the covariance matrix Σ is known and the same for both populations. From the two populations, we collect two independent random samples of size n_1 and n_2 with sample means $\overline{\mathbf{X}}_1$ and $\overline{\mathbf{X}}_2$. You are tasked with testing the hypothesis: $H_0: \underline{\mu}_1 = \underline{\mu}_2$ against $H_1: \underline{\mu}_1 \neq \underline{\mu}_2$
 - i. Derive the test statistic for the hypothesis and explain how you would perform the test and how you would determine the rejection region. (3 Marks)
 - ii. Use the following data to perform the test at 5% significance level of $\alpha = 0.05$:

Sample 1:
$$\overline{\mathbf{X}}_1 = \begin{pmatrix} 2.5 \\ 3.0 \end{pmatrix}$$
, $n_1 = 15$ and Sample 2: $\overline{\mathbf{X}}_2 = \begin{pmatrix} 2.0 \\ 2.8 \end{pmatrix}$, $n_1 = 20$ with a known covariance matrix $\Sigma = \begin{bmatrix} 1.5 & 0.6 \\ 0.6 & 1.2 \end{bmatrix}$ (5 Marks)

b) The dataset below contains measurements of two features (height and weight) from two different groups: Group 1 and Group 2.

Gro	up l	Group 2		
Height	Weight	Height	Weight	
1.50	65	1.70	75	
1.55	62	1.72	78	
1.58	63	1.75	80	
1.62	68	1.80	85	

Your task is to perform a linear discriminant analysis (LDA) by answering the following questions:

- i. Obtain the within-group covariance matrix. (7 Marks)
- ii. Calculate the linear discriminant function coefficients. (5 Marks)