

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY **UNIVERSITY EXAMINATION, 2024/2025 ACADEMIC YEAR** FIRST YEAR, SECOND SEMESTER EXAMINATION FOR THE BACHELOR OF BUSINESS AND INFORMATION TECHNOLOGY **KBI 2108 – DISCRETE STRUCTURES**

Date: 13TH December 2024

	Time: 830AM – 10			
INS	TRUCTIONS TO CANDIDATES	JUANI		
	WER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS	2		
		2		
	ESTION ONE (30 MARKS) Determine how each of the following pairs of sequences of hits is processed by an AN	D goto		
a)	Determine how each of the following pairs of sequences of bits is processed by an AN.	0		
	i. 110001, 101101	(2 Marks)		
1 \	ii. 10001111, 00111100	(2 Marks)		
b)	Let p be "Audrey speaks French" and let q be "Audrey speaks Danish". Give a simple sentence which describes each of the following:	verbal		
	i. ¬¬ <i>p</i>	(1 Mark)		
	ii. $\neg(\neg p \land \neg q)$	(1 Mark)		
c)	Verify that the proposition $p \lor \neg (p \land q)$ is a tautology	(4 Marks)		
d)	Using the following sets: $A = \{1, 2, 3, 4, 5, 6\}, B = \{4, 5, 6, 7, 8, 9\}, C = \{1, 3, 5, 7, 9\}, D = \{2, 3, 5, 7, 8\}, find:$			
	i. $A \oplus B$	(3 Marks)		
	ii. $C \oplus D$	(3 Marks)		
e) A graph G has 21 edges, 3 vertices of degree 4 and the other vertices are of degree 2. Find the				
	number of vertices in G	(5 Marks)		
f)	Find the sum-of- products expansion for the function $F(x, y, z) = (x + y) \overline{z}$	(5 Marks)		
g)	Prove the following proposition $p(n): 1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n-1)}{2}$			
		(4 Marks)		
	ESTION TWO (20 MARKS)			
а	b) Given the sequence of bits $A = 1100110110$, $B = 1110000111$, and $C = 1010010110$, find			
	i. $C(\overline{A} + B)$	(3 Marks)		
	ii. $A \overline{(B+C)}$	(3 Marks)		
ŀ) Verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction	(5 Marks)		
	 Define the following terms in relation to graphs: 	(e mains)		
· ·	i. Isomorphism of graphs	(2 Marks)		
	ii. A subgraph	(2 Marks)		
	iii. Induced subgraph	(2 Marks)		
d	1) Let $N = \{0, 1, 2, 3,\}$. Define $f: N \to N$ as $f(m) = 3^m$. Show that f is a monoid hom	· · · · ·		
from $(N, +) \rightarrow (N, .)$ where $(N, +)$, $(N, .)$ are monoids under usual addition and				
	multiplication respectively	(3 Marks)		

QL	JESTION THREE (20 MARKS)	
a)	Prove the following proposition:	
	$P(n): 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$	(5 Marks)
b)	By use of a Venn diagram denote the following sets	
	i. $A^C \cap (B \setminus C)$	(2 Marks)
	ii. $A \cap B \cap C^c$	(2 Marks)
c)	Find x, y, and z if $(2x, x + y, x - y - 2z) = (4, -1, 3)$	(4 Marks)
d)	A farmer buys three cows, two pigs, and four hens from a man who has six cows, fi	ve pigs, and
	eight hens. How many choices does the farmer have	(4 Marks)
e)	Define the terms: Converse, Inverse, and Contrapositive	(3 Marks)
	JESTION FOUR (20 MARKS)	
a)	Solve the recurrence relation $a_{n+2} = a_{n+1} + a_n$, $n \ge 0$, $a_0 = 0$, $a_1 = 1$	(8 Marks)
b)	Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to E	3:
	$R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$	
	i. Determine the matrix of the relation	(1 Mark)
	ii. Draw the arrow diagram of <i>R</i>	(2 Marks)
	iii. Find the inverse relation R^{-1} of R	(1 Mark)
	iv. Determine the domain and range of <i>R</i>	(2 Marks)
c)	Determine the contrapositive of each of the following statements:	
	i. If Erick is a poet, then he is poor.	(1 Mark)
	ii. Only if Mark studies will he pass the test	(1 Mark)
d)	Let $A = \{a, b, c, d, e, f, g, h\}$, $B = \{1, 2, 3, 4, 5\}$. How many elements are there in P	$(A \times B)$, the
	power set of $A \times B$ (4 Marks)	
~		
	JESTION FIVE (20 MARKS)	
a)	Using the truth table verify the De Morgan's law for logic $\neg(p \lor q) \equiv \neg p \land \neg q$	
		(2 Marks)
1-)	Eighthe value of $1, 0, 1, (0, 1, 1)$	$(2 M_{aulra})$

b)	Find	the value of $1.0 + (0 + 1)$.	(3 Marks)	
c)	A class contains 10 students with 6 men and 4 women. Find the number n of ways to:			
	i.	Select a 4 – member committee from the students	(2 Marks)	
	ii.	Select a 4 – member committee with 2 men and 2 women	(2 Marks)	
	iii.	Elect a president, vice president, and treasurer	(2 Marks)	
d)	Show	w that the negation of $p \rightarrow q$ is logically equivalent to $p \land \neg q$	(2 Marks)	
e)	Give	en $A = \{1, 2\}, B = \{x, y, z\}, and C = \{3, 4\}.$ Find: $A \times B \times C$.	(4 Marks)	
f)	Write the negation of each of the following statements as simple as possible:			
	i.	If she works, she will earn money	(1 Mark)	
	ii.	He swims if and only if the water is warm	(1 Mark)	
	iii.	If it snows, then they do not drive the car	(1 Mark)	