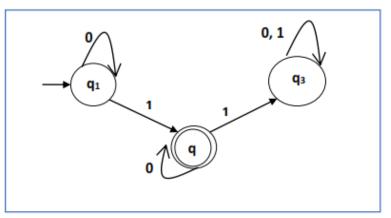

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

# KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2022/2023 ACADEMIC YEAR THIRD YEAR, SECOND SEMESTER EXAMINATION FOR THE BACHELOR OF SCIENCE IN COMPUTER SCIENCE (SPECIAL EXAMINATION) <u>KCS 308 FORMAL LANGUAGES AND AUTOMATA THEORY</u> Date: 13<sup>TH</sup> AUGUST, 2024


Time: 8:30AM – 10:30MM

### <u>INSTRUCTIONS TO CANDIDATES</u> <u>ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS</u> QUESTION ONE: (30 MARKS)

a) Test whether the strings 010010 and 01010 are accepted by the finite automata given in Figure below or not. (3 Marks)



- b) Define the following terms as used in Automata Theory
  - i) Alphabet
  - ii) String
  - iii) Kleene Star
- c) Construct a grammar for the language  $a^{n}b^{n+1}$ , n>0
- d) Construct a regular expression corresponding to the automata given below:



- (6 Marks)
- (4 Marks) (6 Marks)

| e) | Contrast between Non-determinism and Determinism.                                         | (2 Marks) |
|----|-------------------------------------------------------------------------------------------|-----------|
| f) | Differentiate between (a,b) and (a+b)?                                                    | (2 Marks) |
| g) | Finite Automata can be represented by three parts in a mechanical diagram, list the three |           |
|    | parts.                                                                                    | (3 Marks) |
| h) | Construct the language generated from the given grammar:                                  | (4 Marks) |
|    | $S \rightarrow aSb/\epsilon$                                                              |           |

### **QUESTION TWO:(20 MARKS)**

a) The grammar is basically defined as a set of 4-tuple, discuss them with their symbols (8 Marks)

(4 Marks)

(4 Marks)

(4 Marks)

(8 Marks)

- b) What is the difference between FA and NFA?
- c) Consider the following machine M1

|               | Next State, z |      |      |      |
|---------------|---------------|------|------|------|
| Present State | I,            | I_2  | I,   | I,   |
| А             | -             | C, 1 | E, 1 | B, 1 |
| В             | E, 0          | F, 1 | -    | -    |
| С             | F, 0          | F, 1 | -    | -    |
| D             | -             | -    | B, 1 | -    |
| Е             | -             | F, 0 | A, 0 | D, 1 |
| F             | C, 0          | -    | B, 0 | C, 1 |

- i) Construct a merger table for M1
- ii) Find the set of compatibles.

#### **QUESTION THREE: (20 MARKS)**

- a) Discuss the types of grammars according to Chomsky's Hierarchy (12 Marks)
- b) Convert the following NFA to an equivalent DFA.(q0 is the initial state and q1 is the final state)

| Σ                     |                       |            |
|-----------------------|-----------------------|------------|
| States                | 0                     | 1          |
| $\mathbf{q}_{o}$      | q <sub>o</sub>        | $q_0, q_1$ |
| <b>q</b> ,            | <b>q</b> <sub>2</sub> | q2         |
| <b>q</b> <sub>2</sub> | -                     | q2         |

## **QUESTION FOUR: (20 MARKS**

| a) | With the use of a well labeled illustration, Discuss the components of the mechanical diagram of the |           |
|----|------------------------------------------------------------------------------------------------------|-----------|
|    | PDA                                                                                                  | (8 Marks) |
| b) | Find the languages generated by the following grammar                                                | (4 Marks) |
|    | $S \rightarrow aSa/aba$                                                                              |           |
| c) | Test whether the following strings are accepted by the following finite automata or not:             | (8 Marks) |
|    | i. 0001101                                                                                           |           |
|    | ii. 00000                                                                                            |           |

| _                     | Next State            |                       |  |
|-----------------------|-----------------------|-----------------------|--|
| Present State         | 0                     | 1                     |  |
| → q <sub>o</sub>      | <b>q</b> <sub>2</sub> | <b>q</b> <sub>3</sub> |  |
| q,                    | q                     | <b>q</b> <sub>2</sub> |  |
| <b>q</b> <sub>2</sub> | q,                    | <b>q</b> <sub>3</sub> |  |
| <b>q</b> <sub>0</sub> | <b>q</b> <sub>3</sub> | q,                    |  |

## **QUESTION FIVE: (20 MARKS)**

| a) | Finite automata with output can be divided into two types, describe the two types.           | (8 Marks)        |  |
|----|----------------------------------------------------------------------------------------------|------------------|--|
| b) | Draw the state transition of a deterministic finite state automaton which accepts all string | strings from the |  |
|    | alphabet (a, b), such that no string has three consecutive occurrences of the letter b.      | (6 Marks)        |  |
| c) | State the two types of Finite Automata                                                       | (2 Marks)        |  |
| d) | Show the derivation tree for the string 'aabbbb' with the following grammar.                 | (4 Marks)        |  |
|    | $S \rightarrow AB/\epsilon$                                                                  |                  |  |
|    | $A \rightarrow aB$                                                                           |                  |  |
|    | $B \rightarrow Sb$                                                                           |                  |  |