

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 **NAIROBI** Westlands Campus Pamstech House Woodvale Grove Tel. 4442212

Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2022/2023 ACADEMIC YEAR THIRD YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

Date: 12th April, 2022 Time: 8.30am - 10.30am

KMA 302 - COMPLEX ANALYSIS 1

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

Express the complex numbers in polar form; a)

> i) $z = -\sqrt{6} - \sqrt{2}i$ (2 Marks)

> ii) z = -5 + 5i(2 Marks)

Evaluate $(1+i)^6 + (1-i)^3$ b)

(4 Marks)

Simplify $\frac{(\cos 5\theta + i \sin 5\theta)(\cos 4\phi - i \sin 4\phi)}{(\cos 2\theta - i \sin 2\theta)(\cos 3\phi + i \sin 3\phi)}$ c)

(4 Marks)

Apply the Cauchy residue theorem to evaluate $\int_C \frac{2z-1}{z(z+1)(z-3)} dz$ where C is the circle |z|=2d) (5 Marks)

Use De Moivre's theorem to find the 5th power of the complex number $z = 2(\cos 24^{\circ} + i \sin 24^{\circ})$ e) (3 Marks)

Find the complex cube roots of $8(\cos 60^{\circ} + i \sin 60^{\circ})$ f)

(3 Marks)

Evaluate the following integral $\int_{c}^{c} \frac{1}{z(z-1)(2z-1)} dz c : |z| = 2$ using Cauchy's theorem g)

(5 Marks)

Show that $f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$ is not continuous at z = i. (2 Marks) h)

QUESTION TWO (20 MARKS)

- a) Show that $\sin 5\theta = 16 \sin^5 \theta 20 \sin^3 \theta + 5 \sin \theta$ (6 Marks)
- b) Given that $z_1 = 2\sqrt{3}i + 2$ and $z_2 = -3i$; use polar coordinates to evaluate
 - $i) z_1 \cdot z_2 (3 Marks)$
 - ii) $\frac{z_1}{z_2}$ (3 Marks)
- c) If $(z)^{\frac{1}{3}} = a + ib$, where z = x + iy, $x, y, a, b \in \mathbf{R}$, show that $\frac{x}{a} \frac{y}{b} = -2(a^2 + b^2)$ (4 Marks)
- d) Find the fourth roots of unity (4 Marks)

QUESTION THREE (20 MARKS)

- a) Let u(x, y) = 2x(1 2y)
 - i) Show that u(x, y) is harmonic (3 Marks)
 - ii) Find v(x, y) such that f(z) is analytic (5 Marks)
 - iii) Express f(z) in terms of z. (2 Marks)
- b) Evaluate $\int \overline{z} \, dz$ from z = 0 to z = 4 + 2i along the line joining z = 0 to z = 2i and the line joining z = 2i to z = 4 + 2i. (7 Marks)
- c) Solve the equation $z^2 = \bar{z}$, where = x + iy (3 Marks)

QUESTION FOUR (20 MARKS)

a) Explain the nature of the transformation $w = z^2$ considering the semi-circle with centre the origin and the radius r on the z-plane.

(6 Marks)

b) Find the bilinear transformation which maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$ into the points $w_1 = 1$, $w_2 = i$, $w_3 = -1$ respectively.

(8 Marks)

c) Find the residues of $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ (6 Marks)

QUESTION FIVE (20 MARKS)

a) Expand $f(z) = \frac{z}{(z+1)(3+z)}$ in a Laurent series valid for;

$$|z| < 1 ag{2 Marks}$$

ii)
$$1 < |z| < 3$$
 (3 Marks)

b) Use Cauchy's Residue Theorem to evaluate the real integral

$$\int_{-\alpha}^{\alpha} \frac{dx}{(x^2+1)(x^2+9)}$$
 (8 Marks)

c) Use Residue theorem to evaluate
$$\int_0^{2\pi} \frac{d\theta}{5-3 \cos \theta}$$
 (7 Marks)